Geant4  10.03.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4LEpp Class Reference

#include <G4LEpp.hh>

Inheritance diagram for G4LEpp:
Collaboration diagram for G4LEpp:

Public Member Functions

 G4LEpp ()
 
virtual ~G4LEpp ()
 
G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
G4double SampleInvariantT (const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
 
- Public Member Functions inherited from G4HadronElastic
 G4HadronElastic (const G4String &name="hElasticLHEP")
 
virtual ~G4HadronElastic ()
 
void SetLowestEnergyLimit (G4double value)
 
G4double LowestEnergyLimit () const
 
G4double ComputeMomentumCMS (const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
 
virtual void ModelDescription (std::ostream &) const
 
- Public Member Functions inherited from G4HadronicInteraction
 G4HadronicInteraction (const G4String &modelName="HadronicModel")
 
virtual ~G4HadronicInteraction ()
 
virtual G4bool IsApplicable (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
G4double GetMinEnergy () const
 
G4double GetMinEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMinEnergy (G4double anEnergy)
 
void SetMinEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMinEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4double GetMaxEnergy () const
 
G4double GetMaxEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMaxEnergy (const G4double anEnergy)
 
void SetMaxEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMaxEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4int GetVerboseLevel () const
 
void SetVerboseLevel (G4int value)
 
const G4StringGetModelName () const
 
void DeActivateFor (const G4Material *aMaterial)
 
void ActivateFor (const G4Material *aMaterial)
 
void DeActivateFor (const G4Element *anElement)
 
void ActivateFor (const G4Element *anElement)
 
G4bool IsBlocked (const G4Material *aMaterial) const
 
G4bool IsBlocked (const G4Element *anElement) const
 
void SetRecoilEnergyThreshold (G4double val)
 
G4double GetRecoilEnergyThreshold () const
 
virtual const std::pair
< G4double, G4double
GetFatalEnergyCheckLevels () const
 
virtual std::pair< G4double,
G4double
GetEnergyMomentumCheckLevels () const
 
void SetEnergyMomentumCheckLevels (G4double relativeLevel, G4double absoluteLevel)
 
virtual void BuildPhysicsTable (const G4ParticleDefinition &)
 
virtual void InitialiseModel ()
 

Additional Inherited Members

- Protected Member Functions inherited from G4HadronicInteraction
void SetModelName (const G4String &nam)
 
G4bool IsBlocked () const
 
void Block ()
 
- Protected Attributes inherited from G4HadronicInteraction
G4HadFinalState theParticleChange
 
G4int verboseLevel
 
G4double theMinEnergy
 
G4double theMaxEnergy
 
G4bool isBlocked
 

Detailed Description

Definition at line 51 of file G4LEpp.hh.

Constructor & Destructor Documentation

G4LEpp::G4LEpp ( )

Definition at line 41 of file G4LEpp.cc.

41  :G4HadronElastic("G4LEpp")
42 {
43  SetMinEnergy(0.);
44  SetMaxEnergy(5.*GeV);
45 }
G4HadronElastic(const G4String &name="hElasticLHEP")
void SetMinEnergy(G4double anEnergy)
static constexpr double GeV
Definition: G4SIunits.hh:217
void SetMaxEnergy(const G4double anEnergy)

Here is the call graph for this function:

G4LEpp::~G4LEpp ( )
virtual

Definition at line 47 of file G4LEpp.cc.

48 {}

Member Function Documentation

G4HadFinalState * G4LEpp::ApplyYourself ( const G4HadProjectile aTrack,
G4Nucleus targetNucleus 
)
virtual

Reimplemented from G4HadronElastic.

Definition at line 51 of file G4LEpp.cc.

52 {
54  const G4HadProjectile* aParticle = &aTrack;
55 
56  G4double P = aParticle->GetTotalMomentum();
57  G4double Px = aParticle->Get4Momentum().x();
58  G4double Py = aParticle->Get4Momentum().y();
59  G4double Pz = aParticle->Get4Momentum().z();
60  G4double E = aParticle->GetTotalEnergy();
61  G4ThreeVector theInitial = aParticle->Get4Momentum().vect().unit();
62 
63  if (verboseLevel > 1) {
64  G4double ek = aParticle->GetKineticEnergy();
65  G4double E0 = aParticle->GetDefinition()->GetPDGMass();
66  G4double Q = aParticle->GetDefinition()->GetPDGCharge();
67  G4int A = targetNucleus.GetA_asInt();
68  G4int Z = targetNucleus.GetZ_asInt();
69  G4cout << "G4LEpp:ApplyYourself: incident particle: "
70  << aParticle->GetDefinition()->GetParticleName() << G4endl;
71  G4cout << "P = " << P/GeV << " GeV/c"
72  << ", Px = " << Px/GeV << " GeV/c"
73  << ", Py = " << Py/GeV << " GeV/c"
74  << ", Pz = " << Pz/GeV << " GeV/c" << G4endl;
75  G4cout << "E = " << E/GeV << " GeV"
76  << ", kinetic energy = " << ek/GeV << " GeV"
77  << ", mass = " << E0/GeV << " GeV"
78  << ", charge = " << Q << G4endl;
79  G4cout << "G4LEpp:ApplyYourself: material:" << G4endl;
80  G4cout << "A = " << A
81  << ", Z = " << Z
82  << ", atomic mass "
83  << G4Proton::Proton()->GetPDGMass()/GeV << "GeV"
84  << G4endl;
85  //
86  // GHEISHA ADD operation to get total energy, mass, charge
87  //
88  E += proton_mass_c2;
89  G4double E02 = E*E - P*P;
90  E0 = std::sqrt(std::fabs(E02));
91  if (E02 < 0)E0 *= -1;
92  Q += Z;
93  G4cout << "G4LEpp:ApplyYourself: total:" << G4endl;
94  G4cout << "E = " << E/GeV << " GeV"
95  << ", mass = " << E0/GeV << " GeV"
96  << ", charge = " << Q << G4endl;
97  }
98  G4double t = SampleInvariantT(aParticle->GetDefinition(), P, 0, 0);
99  G4double cost = 1.0 - 2*t/(P*P);
100  if(cost > 1.0) { cost = 1.0; }
101  if(cost <-1.0) { cost =-1.0; }
102  G4double sint = std::sqrt((1.0 - cost)*(1.0 + cost));
103  G4double phi = twopi*G4UniformRand();
104  // Get the target particle
105  G4DynamicParticle* targetParticle = targetNucleus.ReturnTargetParticle();
106 
107  G4double E1 = aParticle->GetTotalEnergy();
108  G4double M1 = aParticle->GetDefinition()->GetPDGMass();
109  G4double E2 = targetParticle->GetTotalEnergy();
110  G4double M2 = targetParticle->GetDefinition()->GetPDGMass();
111  G4double totalEnergy = E1 + E2;
112  G4double pseudoMass = std::sqrt(totalEnergy*totalEnergy - P*P);
113 
114  // Transform into centre of mass system
115 
116  G4double px = (M2/pseudoMass)*Px;
117  G4double py = (M2/pseudoMass)*Py;
118  G4double pz = (M2/pseudoMass)*Pz;
119  G4double p = std::sqrt(px*px + py*py + pz*pz);
120 
121  if (verboseLevel > 1) {
122  G4cout << " E1, M1 (GeV) " << E1/GeV << " " << M1/GeV << G4endl;
123  G4cout << " E2, M2 (GeV) " << E2/GeV << " " << M2/GeV << G4endl;
124  G4cout << " particle 1 momentum in CM " << px/GeV
125  << " " << py/GeV << " "
126  << pz/GeV << " " << p/GeV << G4endl;
127  }
128 
129  // First scatter w.r.t. Z axis
130  G4double pxnew = p*sint*std::cos(phi);
131  G4double pynew = p*sint*std::sin(phi);
132  G4double pznew = p*cost;
133 
134  // Rotate according to the direction of the incident particle
135  if (px*px + py*py > 0) {
136  G4double ph, cosp, sinp;
137  cost = pz/p;
138  sint = (std::sqrt((1-cost)*(1+cost)) + std::sqrt(px*px+py*py)/p)/2;
139  py < 0 ? ph = 3*halfpi : ph = halfpi;
140  if (std::fabs(px) > 0.000001*GeV) ph = std::atan2(py,px);
141  cosp = std::cos(ph);
142  sinp = std::sin(ph);
143  px = (cost*cosp*pxnew - sinp*pynew + sint*cosp*pznew);
144  py = (cost*sinp*pxnew + cosp*pynew + sint*sinp*pznew);
145  pz = (-sint*pxnew + cost*pznew);
146  }
147  else {
148  px = pxnew;
149  py = pynew;
150  pz = pznew;
151  }
152 
153  if (verboseLevel > 1) {
154  G4cout << " AFTER SCATTER..." << G4endl;
155  G4cout << " particle 1 momentum in CM " << px/GeV << " " << py/GeV << " "
156  << pz/GeV << " " << p/GeV << G4endl;
157  }
158 
159  // Transform to lab system
160 
161  G4double E1pM2 = E1 + M2;
162  G4double betaCM = P/E1pM2;
163  G4double betaCMx = Px/E1pM2;
164  G4double betaCMy = Py/E1pM2;
165  G4double betaCMz = Pz/E1pM2;
166  G4double gammaCM = E1pM2/std::sqrt(E1pM2*E1pM2 - P*P);
167 
168  if (verboseLevel > 1) {
169  G4cout << " betaCM " << betaCMx << " " << betaCMy << " "
170  << betaCMz << " " << betaCM << G4endl;
171  G4cout << " gammaCM " << gammaCM << G4endl;
172  }
173 
174  // Now following GLOREN...
175 
176  G4double BETA[5], PA[5], PB[5];
177  BETA[1] = -betaCMx;
178  BETA[2] = -betaCMy;
179  BETA[3] = -betaCMz;
180  BETA[4] = gammaCM;
181 
182  //The incident particle...
183 
184  PA[1] = px;
185  PA[2] = py;
186  PA[3] = pz;
187  PA[4] = std::sqrt(M1*M1 + p*p);
188 
189  G4double BETPA = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3];
190  G4double BPGAM = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4];
191 
192  PB[1] = PA[1] + BPGAM * BETA[1];
193  PB[2] = PA[2] + BPGAM * BETA[2];
194  PB[3] = PA[3] + BPGAM * BETA[3];
195  PB[4] = (PA[4] - BETPA) * BETA[4];
196 
198  newP->SetDefinition(aParticle->GetDefinition());
199  newP->SetMomentum(G4ThreeVector(PB[1], PB[2], PB[3]));
200 
201  //The target particle...
202 
203  PA[1] = -px;
204  PA[2] = -py;
205  PA[3] = -pz;
206  PA[4] = std::sqrt(M2*M2 + p*p);
207 
208  BETPA = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3];
209  BPGAM = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4];
210 
211  PB[1] = PA[1] + BPGAM * BETA[1];
212  PB[2] = PA[2] + BPGAM * BETA[2];
213  PB[3] = PA[3] + BPGAM * BETA[3];
214  PB[4] = (PA[4] - BETPA) * BETA[4];
215 
216  targetParticle->SetMomentum(G4ThreeVector(PB[1], PB[2], PB[3]));
217 
218  if (verboseLevel > 1) {
219  G4cout << " particle 1 momentum in LAB "
220  << newP->GetMomentum()/GeV
221  << " " << newP->GetTotalMomentum()/GeV << G4endl;
222  G4cout << " particle 2 momentum in LAB "
223  << targetParticle->GetMomentum()/GeV
224  << " " << targetParticle->GetTotalMomentum()/GeV << G4endl;
225  G4cout << " TOTAL momentum in LAB "
226  << (newP->GetMomentum()+targetParticle->GetMomentum())/GeV
227  << " "
228  << (newP->GetMomentum()+targetParticle->GetMomentum()).mag()/GeV
229  << G4endl;
230  }
231 
234  delete newP;
235 
236  // Recoil particle
237  theParticleChange.AddSecondary(targetParticle);
238  return &theParticleChange;
239 }
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
void SetMomentum(const G4ThreeVector &momentum)
G4double GetKineticEnergy() const
CLHEP::Hep3Vector G4ThreeVector
G4double GetTotalEnergy() const
const char * p
Definition: xmltok.h:285
static double Q[]
G4ParticleDefinition * GetDefinition() const
int G4int
Definition: G4Types.hh:78
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:241
const G4String & GetParticleName() const
static double P[]
static constexpr double twopi
Definition: G4SIunits.hh:76
G4double GetTotalMomentum() const
Hep3Vector vect() const
#define G4UniformRand()
Definition: Randomize.hh:97
G4GLOB_DLL std::ostream G4cout
double A(double temperature)
const G4ParticleDefinition * GetDefinition() const
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
G4double ek
static G4Proton * Proton()
Definition: G4Proton.cc:93
float proton_mass_c2
Definition: hepunit.py:275
const G4LorentzVector & Get4Momentum() const
void SetEnergyChange(G4double anEnergy)
G4double GetPDGMass() const
Hep3Vector unit() const
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
static constexpr double GeV
Definition: G4SIunits.hh:217
#define G4endl
Definition: G4ios.hh:61
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
static constexpr double halfpi
Definition: G4SIunits.hh:77
double G4double
Definition: G4Types.hh:76
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
G4double SampleInvariantT(const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
Definition: G4LEpp.cc:245
G4double GetPDGCharge() const
void SetMomentumChange(const G4ThreeVector &aV)
G4ThreeVector GetMomentum() const
G4double GetTotalMomentum() const
G4double GetTotalEnergy() const

Here is the call graph for this function:

G4double G4LEpp::SampleInvariantT ( const G4ParticleDefinition p,
G4double  plab,
G4int  Z,
G4int  A 
)
virtual

Reimplemented from G4HadronElastic.

Definition at line 245 of file G4LEpp.cc.

247 {
248  G4double nMass = p->GetPDGMass(); // 939.565346*MeV;
249  G4double ek = std::sqrt(plab*plab+nMass*nMass) - nMass;
250 
251  // Find energy bin
252 
253  G4int je1 = 0;
254  G4int je2 = NENERGY - 1;
255  ek /= GeV;
256 
257  do
258  {
259  G4int midBin = (je1 + je2)/2;
260 
261  if (ek < elab[midBin]) je2 = midBin;
262  else je1 = midBin;
263  }
264  while (je2 - je1 > 1); /* Loop checking, 10.08.2015, A.Ribon */
265 
266  G4double delab = elab[je2] - elab[je1];
267 
268  // Sample the angle
269 
270  G4double sample = G4UniformRand();
271  G4int ke1 = 0;
272  G4int ke2 = NANGLE - 1;
273  G4double dsig, b, rc;
274 
275  dsig = Sig[je2][0] - Sig[je1][0];
276  rc = dsig/delab;
277  b = Sig[je1][0] - rc*elab[je1];
278 
279  G4double sigint1 = rc*ek + b;
280  G4double sigint2 = 0.;
281 
282  do
283  {
284  G4int midBin = (ke1 + ke2)/2;
285  dsig = Sig[je2][midBin] - Sig[je1][midBin];
286  rc = dsig/delab;
287  b = Sig[je1][midBin] - rc*elab[je1];
288  G4double sigint = rc*ek + b;
289 
290  if (sample < sigint)
291  {
292  ke2 = midBin;
293  sigint2 = sigint;
294  }
295  else
296  {
297  ke1 = midBin;
298  sigint1 = sigint;
299  }
300  }
301  while (ke2 - ke1 > 1); /* Loop checking, 10.08.2015, A.Ribon */
302 
303  dsig = sigint2 - sigint1;
304  rc = 1./dsig;
305  b = ke1 - rc*sigint1;
306 
307  G4double kint = rc*sample + b;
308  G4double theta = (0.5 + kint)*pi/180.;
309  G4double t = 0.5*plab*plab*(1 - std::cos(theta));
310 
311  return t;
312 }
int G4int
Definition: G4Types.hh:78
tuple b
Definition: test.py:12
#define G4UniformRand()
Definition: Randomize.hh:97
G4double ek
G4double GetPDGMass() const
static constexpr double GeV
Definition: G4SIunits.hh:217
static constexpr double pi
Definition: G4SIunits.hh:75
double G4double
Definition: G4Types.hh:76

Here is the call graph for this function:

Here is the caller graph for this function:


The documentation for this class was generated from the following files: