53 lowestEnergyLimit= 1.e-6*
eV;
70 outFile <<
"G4HadronElastic is a hadron-nucleus elastic scattering\n"
71 <<
"model which uses the Gheisha two-exponential momentum\n"
72 <<
"transfer parameterization. The model is fully relativistic\n"
73 <<
"as opposed to the original Gheisha model which was not.\n"
74 <<
"This model may be used for all long-lived hadrons at all\n"
75 <<
"incident energies.\n";
87 if(ekin <= lowestEnergyLimit) {
103 G4cout <<
"G4HadronElastic: "
105 <<
" Plab(GeV/c)= " << plab/
GeV
106 <<
" Ekin(MeV) = " << ekin/
MeV
107 <<
" scattered off Z= " << Z
122 G4double tmax = 4.0*momentumCMS*momentumCMS;
131 if(cost > 1.0 || cost < -1.0) {
133 G4cout <<
"G4HadronElastic WARNING (1 - cost)= " << 1 - cost
134 <<
" after scattering of "
136 <<
" p(GeV/c)= " << plab/
GeV
137 <<
" on an ion Z= " << Z <<
" A= " << A
145 sint = std::sqrt((1.0-cost)*(1.0+cost));
148 G4cout <<
" t= " << t <<
" tmax(GeV^2)= " << tmax/(
GeV*
GeV)
149 <<
" Pcms(GeV)= " << momentumCMS/
GeV <<
" cos(t)=" << cost
150 <<
" sin(t)=" << sint <<
G4endl;
152 G4ThreeVector v1(sint*std::cos(phi),sint*std::sin(phi),cost);
155 std::sqrt(momentumCMS*momentumCMS + m1*m1));
161 G4cout <<
" m= " << m1 <<
" Efin(MeV)= " << eFinal
162 <<
" Proj: 4-mom " << lv1 <<
" Final: " << nlv1
165 if(eFinal <= lowestEnergyLimit) {
166 if(eFinal < 0.0 && verboseLevel > 0) {
167 G4cout <<
"G4HadronElastic WARNING Efinal= " << eFinal
168 <<
" after scattering of "
170 <<
" p(GeV/c)= " << plab/
GeV
171 <<
" on an ion Z= " << Z <<
" A= " << A
185 G4cout <<
"Recoil: " <<
" m= " << mass2 <<
" Erec(MeV)= " << erec
192 if(Z == 1 && A == 1) { theDef = theProton; }
193 else if (Z == 1 && A == 2) { theDef = theDeuteron; }
195 else if (Z == 2 && A == 3) { theDef =
G4He3::He3(); }
196 else if (Z == 2 && A == 4) { theDef = theAlpha; }
203 }
else if(erec > 0.0) {
218 G4double tmax = 4.0*momentumCMS*momentumCMS/GeV2;
223 bb = 14.5*g4pow->
Z23(A);
224 aa = g4pow->
powZ(A, 1.63)/
bb;
225 cc = 1.4*g4pow->
Z13(A)/dd;
227 bb = 60.*g4pow->
Z13(A);
228 aa = g4pow->
powZ(A, 1.33)/
bb;
229 cc = 0.4*g4pow->
powZ(A, 0.4)/dd;
virtual G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
static G4Pow * GetInstance()
Hep3Vector boostVector() const
static G4double GetNuclearMass(const G4double A, const G4double Z)
virtual void ModelDescription(std::ostream &) const
virtual G4double SampleInvariantT(const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
G4HadronElastic(const G4String &name="hElasticLHEP")
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
G4double GetRecoilEnergyThreshold() const
const G4String & GetParticleName() const
static constexpr double TeV
void SetMinEnergy(G4double anEnergy)
G4IonTable * GetIonTable() const
G4GLOB_DLL std::ostream G4cout
G4double Z13(G4int Z) const
double A(double temperature)
const G4ParticleDefinition * GetDefinition() const
HepLorentzVector & boost(double, double, double)
G4double GetKineticEnergy() const
static G4Triton * Triton()
static G4Proton * Proton()
static constexpr double eV
static G4Neutron * Neutron()
const G4LorentzVector & Get4Momentum() const
static G4Deuteron * Deuteron()
G4double G4Log(G4double x)
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
void SetEnergyChange(G4double anEnergy)
G4double ComputeMomentumCMS(const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
G4double GetPDGMass() const
static G4ParticleTable * GetParticleTable()
static constexpr double GeV
G4double Z23(G4int Z) const
virtual ~G4HadronElastic()
void SetMaxEnergy(const G4double anEnergy)
G4HadFinalState theParticleChange
void SetLocalEnergyDeposit(G4double aE)
static constexpr double MeV
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
G4double powZ(G4int Z, G4double y) const
void SetMomentumChange(const G4ThreeVector &aV)
static constexpr double twopi
G4double GetTotalMomentum() const
CLHEP::HepLorentzVector G4LorentzVector