Geant4  10.03.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4INCLTransmissionChannel.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // INCL++ intra-nuclear cascade model
27 // Alain Boudard, CEA-Saclay, France
28 // Joseph Cugnon, University of Liege, Belgium
29 // Jean-Christophe David, CEA-Saclay, France
30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31 // Sylvie Leray, CEA-Saclay, France
32 // Davide Mancusi, CEA-Saclay, France
33 //
34 #define INCLXX_IN_GEANT4_MODE 1
35 
36 #include "globals.hh"
37 
39 
40 namespace G4INCL {
41 
42  TransmissionChannel::TransmissionChannel(Nucleus * const nucleus, Particle * const particle)
43  : theNucleus(nucleus), theParticle(particle),
44  refraction(false),
45  pOutMag(0.),
46  kineticEnergyOutside(initializeKineticEnergyOutside()),
47  cosRefractionAngle(1.)
48  {}
49 
50  TransmissionChannel::TransmissionChannel(Nucleus * const nucleus, Particle * const particle, const G4double TOut)
51  : theNucleus(nucleus), theParticle(particle),
52  refraction(false),
53  pOutMag(0.),
54  kineticEnergyOutside(TOut),
55  cosRefractionAngle(1.)
56  {}
57 
58  TransmissionChannel::TransmissionChannel(Nucleus * const nucleus, Particle * const particle, const G4double kOut, const G4double cosR)
59  : theNucleus(nucleus), theParticle(particle),
60  refraction(true),
61  pOutMag(kOut),
62  kineticEnergyOutside(initializeKineticEnergyOutside()),
63  cosRefractionAngle(cosR)
64  {}
65 
67 
68  G4double TransmissionChannel::initializeKineticEnergyOutside() {
69  // The particle energy outside the nucleus. Subtract the nuclear
70  // potential from the kinetic energy when leaving the nucleus
71  G4double TOut = theParticle->getEnergy()
72  - theParticle->getPotentialEnergy()
73  - theParticle->getMass();
74 
75  // Correction for real masses
76  const G4int AParent = theNucleus->getA();
77  const G4int ZParent = theNucleus->getZ();
78  const G4double theQValueCorrection = theParticle->getEmissionQValueCorrection(AParent,ZParent);
79  TOut += theQValueCorrection;
80  return TOut;
81  }
82 
83  void TransmissionChannel::particleLeaves() {
84 
85  // Use the table mass in the outside world
86  theParticle->setTableMass();
87  theParticle->setPotentialEnergy(0.);
88 
89  if(refraction) {
90  // Change the momentum direction
91  // The magnitude of the particle momentum outside the nucleus will be
92  // fixed by the kineticEnergyOutside variable. This is done in order to
93  // avoid numerical inaccuracies.
94  const ThreeVector &position = theParticle->getPosition();
95  const G4double r2 = position.mag2();
96  ThreeVector normal;
97  if(r2>0.)
98  normal = position / std::sqrt(r2);
99 
100  const ThreeVector &momentum = theParticle->getMomentum();
101 
102  const ThreeVector pOut = normal * (pOutMag * cosRefractionAngle) + momentum - normal * normal.dot(momentum);
103 // assert(std::fabs(pOut.mag()-pOutMag)<1.e-5);
104 
105  theParticle->setMomentum(pOut);
106  }
107  // Scaling factor for the particle momentum
108  theParticle->setEnergy(kineticEnergyOutside + theParticle->getMass());
109  theParticle->adjustMomentumFromEnergy();
110  }
111 
113  G4double initialEnergy = 0.0;
114  initialEnergy = theParticle->getEnergy() - theParticle->getPotentialEnergy();
115 
116  // Correction for real masses
117  const G4int AParent = theNucleus->getA();
118  const G4int ZParent = theNucleus->getZ();
119  initialEnergy += theParticle->getTableMass() - theParticle->getMass()
120  + theParticle->getEmissionQValueCorrection(AParent,ZParent);
121 
122  particleLeaves();
123 
124  fs->setTotalEnergyBeforeInteraction(initialEnergy);
125  fs->addOutgoingParticle(theParticle); // We write the particle down as outgoing
126  }
127 }
G4int getA() const
Returns the baryon number.
TransmissionChannel(Nucleus *n, Particle *p)
G4double getMass() const
Get the cached particle mass.
G4double dot(const ThreeVector &v) const
const G4INCL::ThreeVector & getMomentum() const
G4double getEnergy() const
int G4int
Definition: G4Types.hh:78
G4double mag2() const
G4double getPotentialEnergy() const
Get the particle potential energy.
void setEnergy(G4double energy)
static double normal(HepRandomEngine *eptr)
Definition: RandPoisson.cc:77
G4int getZ() const
Returns the charge number.
void addOutgoingParticle(Particle *p)
void setPotentialEnergy(G4double v)
Set the particle potential energy.
void setTotalEnergyBeforeInteraction(G4double E)
void setTableMass()
Set the mass of the Particle to its table mass.
const G4INCL::ThreeVector & getPosition() const
virtual G4double getTableMass() const
Get the tabulated particle mass.
double G4double
Definition: G4Types.hh:76
G4double getEmissionQValueCorrection(const G4int AParent, const G4int ZParent) const
Computes correction on the emission Q-value.
const ThreeVector & adjustMomentumFromEnergy()
Rescale the momentum to match the total energy.
virtual void setMomentum(const G4INCL::ThreeVector &momentum)