53 theEvaporationProbabilityPtr(aEmissionStrategy),
54 EmissionProbability(0.0),
55 MaximalKineticEnergy(-CLHEP::
GeV)
60 MyOwnLevelDensity =
true;
62 ResidualMass = CoulombBarrier = 0.0;
64 ResidualZ = ResidualA = 0;
70 if (MyOwnLevelDensity) {
delete theLevelDensityPtr; }
71 delete theCoulombBarrierPtr;
87 EmissionProbability = 0.0;
90 if (ResidualA >= ResidualZ && ResidualZ > 0 && ResidualA >= A) {
98 G4double Etot = FragmentMass + ExEnergy;
106 if(Etot > ResidualMass + EvaporatedMass + CoulombBarrier) {
109 MaximalKineticEnergy = ((Etot-ResidualMass)*(Etot+ResidualMass)
110 + EvaporatedMass*EvaporatedMass)/(2.0*Etot)
111 - EvaporatedMass - CoulombBarrier;
115 if (MaximalKineticEnergy > 0.0) {
117 EmissionProbability = theEvaporationProbabilityPtr->
118 EmissionProbability(*fragment, MaximalKineticEnergy);
124 return EmissionProbability;
130 G4double evEnergy = SampleKineticEnergy(*theNucleus) + EvaporatedMass;
133 (std::sqrt((evEnergy - EvaporatedMass)*(evEnergy + EvaporatedMass))));
139 evFragment =
new G4Fragment(A, Z, EvaporatedMomentum);
140 ResidualMomentum -= EvaporatedMomentum;
173 G4double TCN = 1.0/(std::sqrt(aCN/UxCN) - 1.5/UxCN);
180 - 1.25*
G4Log(UxCN/
MeV) + 2.0*std::sqrt(aCN*UxCN));
181 InitialLevelDensity = (
pi/12.0)*
G4Exp((U-E0CN)/TCN)/TCN;
187 InitialLevelDensity = (
pi/12.0)*
G4Exp(2*x1)/(x*std::sqrt(x1));
203 Rb = (1.12*(Aj + Ad) - 0.86*((Aj+Ad)/(Aj*Ad))+2.85)*
fermi;
209 Rb=1.5*(Aj+Ad)*
fermi;
218 G4double ConstantFactor = gg*GeometricalXS*Alpha*
pi/(InitialLevelDensity*12);
222 G4double theEnergy = MaximalKineticEnergy + CoulombBarrier;
226 for(
G4int i=0; i<100; ++i) {
227 KineticEnergy = CoulombBarrier +
G4UniformRand()*(MaximalKineticEnergy);
228 G4double edelta = theEnergy-KineticEnergy-delta0;
229 Probability = ConstantFactor*(KineticEnergy + Beta);
232 G4double T = 1.0/(std::sqrt(a/Ux) - 1.5/Ux);
235 if (theEnergy - KineticEnergy < Ex) {
237 - 1.25*
G4Log(Ux) + 2.0*std::sqrt(a*Ux));
238 Probability *=
G4Exp((theEnergy-KineticEnergy-E0)/T)/T;
242 G4Exp(2*std::sqrt(a*edelta) - 0.25*
G4Log(a*edelta*e2*e2));
244 if(EmissionProbability*
G4UniformRand() <= Probability) {
break; }
247 return KineticEnergy;
255 G4double SinTheta = std::sqrt(1.0 - CosTheta*CosTheta);
258 Magnitude*std::sin(Phi)*SinTheta,
265 theEvaporationProbabilityPtr->
Dump();
static G4Pow * GetInstance()
Hep3Vector boostVector() const
static G4double GetNuclearMass(const G4double A, const G4double Z)
std::vector< ExP01TrackerHit * > a
void SetCoulomBarrier(const G4VCoulombBarrier *aCoulombBarrierStrategy)
G4double CalcAlphaParam(const G4Fragment &) const
G4GEMChannel(G4int theA, G4int theZ, const G4String &aName, G4GEMProbability *aEmissionStrategy)
virtual G4Fragment * EmittedFragment(G4Fragment *theNucleus)
static constexpr double twopi
G4double Z13(G4int Z) const
double A(double temperature)
G4double GetSpin(void) const
const G4LorentzVector & GetMomentum() const
HepLorentzVector & boost(double, double, double)
void SetMomentum(const G4LorentzVector &value)
G4double GetPairingCorrection(G4int A, G4int Z) const
G4double GetGroundStateMass() const
G4double CalcBetaParam(const G4Fragment &) const
G4double G4Log(G4double x)
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
static G4PairingCorrection * GetInstance()
virtual G4double GetEmissionProbability(G4Fragment *theNucleus)
virtual void Dump() const
void SetZandA_asInt(G4int Znew, G4int Anew)
virtual G4double LevelDensityParameter(G4int A, G4int Z, G4double U) const =0
static constexpr double GeV
virtual G4double GetCoulombBarrier(G4int ARes, G4int ZRes, G4double U) const =0
static constexpr double MeV
static constexpr double pi
static constexpr double fermi
G4double GetExcitationEnergy() const
static constexpr double pi2