Geant4  10.03.p01
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4IonINCLXXPhysics Class Reference

#include <G4IonINCLXXPhysics.hh>

Inheritance diagram for G4IonINCLXXPhysics:
Collaboration diagram for G4IonINCLXXPhysics:

Public Member Functions

 G4IonINCLXXPhysics (G4int ver=0)
 
 G4IonINCLXXPhysics (const G4String &name, G4int ver=0)
 
virtual ~G4IonINCLXXPhysics ()
 
virtual void ConstructParticle ()
 
virtual void ConstructProcess ()
 
- Public Member Functions inherited from G4VPhysicsConstructor
 G4VPhysicsConstructor (const G4String &="")
 
 G4VPhysicsConstructor (const G4String &name, G4int physics_type)
 
virtual ~G4VPhysicsConstructor ()
 
void SetPhysicsName (const G4String &="")
 
const G4StringGetPhysicsName () const
 
void SetPhysicsType (G4int)
 
G4int GetPhysicsType () const
 
void SetVerboseLevel (G4int value)
 
G4int GetVerboseLevel () const
 
G4int GetInstanceID () const
 

Additional Inherited Members

- Static Public Member Functions inherited from G4VPhysicsConstructor
static const G4VPCManagerGetSubInstanceManager ()
 
- Protected Member Functions inherited from G4VPhysicsConstructor
G4bool RegisterProcess (G4VProcess *process, G4ParticleDefinition *particle)
 
G4ParticleTable::G4PTblDicIteratorGetParticleIterator () const
 
- Protected Attributes inherited from G4VPhysicsConstructor
G4int verboseLevel
 
G4String namePhysics
 
G4int typePhysics
 
G4ParticleTabletheParticleTable
 
G4int g4vpcInstanceID
 
- Static Protected Attributes inherited from G4VPhysicsConstructor
static G4RUN_DLL G4VPCManager subInstanceManager
 

Detailed Description

Definition at line 54 of file G4IonINCLXXPhysics.hh.

Constructor & Destructor Documentation

G4IonINCLXXPhysics::G4IonINCLXXPhysics ( G4int  ver = 0)

Definition at line 89 of file G4IonINCLXXPhysics.cc.

89  :
90  G4VPhysicsConstructor("IonINCLXX"),
91  verbose(ver)
92 {
93  // INCLXX light ion maximum energy is 3.0 GeV/nucleon
94  emax_d = 3.0 * GeV;
95  emax_t = 3.0 * GeV;
96  emax_he3 = 3.0 * GeV;
97  emax_alpha = 3.0 * GeV;
98  emax = 3.0 * GeV;
99  emaxFTFP = 1.*TeV;
100  emin = 0.*MeV;
102  if(verbose > 1) G4cout << "### G4IonINCLXXPhysics" << G4endl;
103 }
static constexpr double TeV
Definition: G4SIunits.hh:218
G4GLOB_DLL std::ostream G4cout
G4VPhysicsConstructor(const G4String &="")
static constexpr double GeV
Definition: G4SIunits.hh:217
#define G4endl
Definition: G4ios.hh:61
static constexpr double MeV
Definition: G4SIunits.hh:214

Here is the call graph for this function:

G4IonINCLXXPhysics::G4IonINCLXXPhysics ( const G4String name,
G4int  ver = 0 
)

Definition at line 105 of file G4IonINCLXXPhysics.cc.

107  : G4VPhysicsConstructor(name),
108  verbose(ver)
109 {
110  // INCLXX light ion maximum energy is 3.0 GeV/nucleon
111  emax_d = 3.0 * GeV;
112  emax_t = 3.0 * GeV;
113  emax_he3 = 3.0 * GeV;
114  emax_alpha = 3.0 * GeV;
115  emax = 3.0 * GeV;
116  emaxFTFP = 1.*TeV;
117  emin = 0.*MeV;
119  if(verbose > 1) G4cout << "### G4IonINCLXXPhysics" << G4endl;
120 }
static constexpr double TeV
Definition: G4SIunits.hh:218
G4GLOB_DLL std::ostream G4cout
G4VPhysicsConstructor(const G4String &="")
static constexpr double GeV
Definition: G4SIunits.hh:217
#define G4endl
Definition: G4ios.hh:61
static constexpr double MeV
Definition: G4SIunits.hh:214

Here is the call graph for this function:

G4IonINCLXXPhysics::~G4IonINCLXXPhysics ( )
virtual

Definition at line 122 of file G4IonINCLXXPhysics.cc.

123 {
124  //For MT need to explicitly set back pointers to zero:
125  //variables are static and if new threads are created we can have problems
126  //since variable is still pointing old value
127  if(wasActivated) {
128  delete theFTFPBuilderDeuteron; theFTFPBuilderDeuteron=0;
129  delete theFTFPBuilderTriton; theFTFPBuilderTriton=0;
130  delete theFTFPBuilderHe3; theFTFPBuilderHe3=0;
131  delete theFTFPBuilderAlpha; theFTFPBuilderAlpha=0;
132  delete theFTFPBuilderIons; theFTFPBuilderIons=0;
133  delete theGGNuclNuclXS; theGGNuclNuclXS=0;
134  delete theNuclNuclData; theGGNuclNuclXS=0;
135  G4int i;
136  if ( p_list ) {
137  G4int n = p_list->size();
138  for(i=0; i<n; i++) {delete (*p_list)[i];}
139  delete p_list; p_list = 0;
140  }
141  if ( model_list) {
142  G4int n = model_list->size();
143  for(i=0; i<n; i++) { delete (*model_list)[i];}
144  delete model_list; model_list = 0;
145  }
146  }
147 }
int G4int
Definition: G4Types.hh:78

Member Function Documentation

void G4IonINCLXXPhysics::ConstructParticle ( )
virtual

Implements G4VPhysicsConstructor.

Definition at line 227 of file G4IonINCLXXPhysics.cc.

228 {
229  // Construct light ions
230  G4IonConstructor pConstructor;
231  pConstructor.ConstructParticle();
232 }
static void ConstructParticle()

Here is the call graph for this function:

void G4IonINCLXXPhysics::ConstructProcess ( )
virtual

Implements G4VPhysicsConstructor.

Definition at line 149 of file G4IonINCLXXPhysics.cc.

150 {
151  if(wasActivated) return;
152  wasActivated = true;
153 
154  theINCLXXDeuteron= new G4INCLXXInterface();
155  theINCLXXTriton= new G4INCLXXInterface();
156  theINCLXXHe3= new G4INCLXXInterface();
157  theINCLXXAlpha= new G4INCLXXInterface();
158  theINCLXXIons= new G4INCLXXInterface();
159  if ( model_list == 0 ) model_list = new std::vector<G4HadronicInteraction*>;
160  model_list->push_back(theINCLXXDeuteron);
161  model_list->push_back(theINCLXXTriton);
162  model_list->push_back(theINCLXXHe3);
163  model_list->push_back(theINCLXXAlpha);
164  model_list->push_back(theINCLXXIons);
165 
168  G4PreCompoundModel* thePreCompound = static_cast<G4PreCompoundModel*>(p);
169  if(!thePreCompound) { thePreCompound = new G4PreCompoundModel; }
170 
171  theFTFPBuilderDeuteron = new G4FTFBuilder("FTFP",thePreCompound);
172  theFTFPDeuteron = theFTFPBuilderDeuteron->GetModel();
173  theFTFPBuilderTriton = new G4FTFBuilder("FTFP",thePreCompound);
174  theFTFPTriton = theFTFPBuilderTriton->GetModel();
175  theFTFPBuilderHe3 = new G4FTFBuilder("FTFP",thePreCompound);
176  theFTFPHe3 = theFTFPBuilderHe3->GetModel();
177  theFTFPBuilderAlpha = new G4FTFBuilder("FTFP",thePreCompound);
178  theFTFPAlpha = theFTFPBuilderAlpha->GetModel();
179  theFTFPBuilderIons = new G4FTFBuilder("FTFP",thePreCompound);
180  theFTFPIons = theFTFPBuilderIons->GetModel();
181  model_list->push_back(theFTFPDeuteron);
182  model_list->push_back(theFTFPTriton);
183  model_list->push_back(theFTFPHe3);
184  model_list->push_back(theFTFPAlpha);
185  model_list->push_back(theFTFPIons);
186 
187  theNuclNuclData = new G4CrossSectionInelastic( theGGNuclNuclXS = new G4ComponentGGNuclNuclXsc() );
188 
189  AddProcess("dInelastic", G4Deuteron::Deuteron(), theINCLXXDeuteron, theFTFPDeuteron, emax_d);
190  AddProcess("tInelastic", G4Triton::Triton(), theINCLXXTriton, theFTFPTriton, emax_t);
191  AddProcess("He3Inelastic", G4He3::He3(), theINCLXXHe3, theFTFPHe3, emax_he3);
192  AddProcess("alphaInelastic", G4Alpha::Alpha(), theINCLXXAlpha, theFTFPAlpha, emax_alpha);
193  AddProcess("ionInelastic", G4GenericIon::GenericIon(), theINCLXXIons, theFTFPIons, emax);
194 }
const char * p
Definition: xmltok.h:285
INCL++ intra-nuclear cascade.
G4HadronicInteraction * GetModel()
static G4Triton * Triton()
Definition: G4Triton.cc:95
static G4Deuteron * Deuteron()
Definition: G4Deuteron.cc:94
G4HadronicInteraction * FindModel(const G4String &name)
static G4GenericIon * GenericIon()
Definition: G4GenericIon.cc:93
static G4HadronicInteractionRegistry * Instance()
static G4Alpha * Alpha()
Definition: G4Alpha.cc:89
static G4He3 * He3()
Definition: G4He3.cc:94

Here is the call graph for this function:


The documentation for this class was generated from the following files: