Geant4  10.03.p01
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4INCL::ElasticChannel Class Reference

#include <G4INCLElasticChannel.hh>

Inheritance diagram for G4INCL::ElasticChannel:
Collaboration diagram for G4INCL::ElasticChannel:

Public Member Functions

 ElasticChannel (Particle *p1, Particle *p2)
 
virtual ~ElasticChannel ()
 
void fillFinalState (FinalState *fs)
 
- Public Member Functions inherited from G4INCL::IChannel
 IChannel ()
 
virtual ~IChannel ()
 
FinalStategetFinalState ()
 

Detailed Description

Definition at line 49 of file G4INCLElasticChannel.hh.

Constructor & Destructor Documentation

G4INCL::ElasticChannel::ElasticChannel ( Particle p1,
Particle p2 
)

Definition at line 47 of file G4INCLElasticChannel.cc.

48  :particle1(p1), particle2(p2)
49  {
50  }
G4INCL::ElasticChannel::~ElasticChannel ( )
virtual

Definition at line 52 of file G4INCLElasticChannel.cc.

53  {
54  }

Member Function Documentation

void G4INCL::ElasticChannel::fillFinalState ( FinalState fs)
virtual

Implements G4INCL::IChannel.

Definition at line 56 of file G4INCLElasticChannel.cc.

57  {
58  ParticleType p1TypeOld = particle1->getType();
59  ParticleType p2TypeOld = particle2->getType();
60 
61  /* Concerning the way we calculate the lab momentum, see the considerations
62  * in CrossSections::elasticNNLegacy().
63  */
64  const G4double s = KinematicsUtils::squareTotalEnergyInCM(particle1, particle2);
66 
67  const G4int isospin = ParticleTable::getIsospin(particle1->getType()) +
68  ParticleTable::getIsospin(particle2->getType());
69 
70  // Calculate the outcome of the channel:
71  G4double psq = particle1->getMomentum().mag2();
72  G4double pnorm = std::sqrt(psq);
74  G4double btmax = 4.0 * psq * b;
75  G4double z = std::exp(-btmax);
76  G4double ranres = Random::shoot();
77  G4double y = 1.0 - ranres * (1.0 - z);
78  G4double T = std::log(y)/b;
79  G4int iexpi = 0;
80  G4double apt = 1.0;
81 
82  // Handle np case
83  if((particle1->getType() == Proton && particle2->getType() == Neutron) ||
84  (particle1->getType() == Neutron && particle2->getType() == Proton)) {
85  if(pl > 800.0) {
86  const G4double x = 0.001 * pl; // Transform to GeV
87  apt = (800.0/pl)*(800.0/pl);
88  G4double cpt = std::max(6.23 * std::exp(-1.79*x), 0.3);
89  G4double alphac = 100.0 * 1.0e-6;
90  G4double aaa = (1 + apt) * (1 - std::exp(-btmax))/b;
91  G4double argu = psq * alphac;
92 
93  if(argu >= 8) {
94  argu = 0.0;
95  } else {
96  argu = std::exp(-4.0 * argu);
97  }
98 
99  G4double aac = cpt * (1.0 - argu)/alphac;
100  G4double fracpn = aaa/(aac + aaa);
101  if(Random::shoot() > fracpn) {
102  z = std::exp(-4.0 * psq *alphac);
103  iexpi = 1;
104  y = 1.0 - ranres*(1.0 - z);
105  T = std::log(y)/alphac;
106  }
107  }
108  }
109 
110  G4double ctet = 1.0 + 0.5*T/psq;
111  if(std::abs(ctet) > 1.0) ctet = Math::sign(ctet);
112  G4double stet = std::sqrt(1.0 - ctet*ctet);
113  G4double rndm = Random::shoot();
114 
115  G4double fi = Math::twoPi * rndm;
116  G4double cfi = std::cos(fi);
117  G4double sfi = std::sin(fi);
118 
119  G4double xx = particle1->getMomentum().perp2();
120  G4double zz = std::pow(particle1->getMomentum().getZ(), 2);
121 
122  if(xx >= (zz * 1.0e-8)) {
123  ThreeVector p = particle1->getMomentum();
124  G4double yn = std::sqrt(xx);
125  G4double zn = yn * pnorm;
126  G4double ex[3], ey[3], ez[3];
127  ez[0] = p.getX() / pnorm;
128  ez[1] = p.getY() / pnorm;
129  ez[2] = p.getZ() / pnorm;
130 
131  // Vector Ex is chosen arbitrarily:
132  ex[0] = p.getY() / yn;
133  ex[1] = -p.getX() / yn;
134  ex[2] = 0.0;
135 
136  ey[0] = p.getX() * p.getZ() / zn;
137  ey[1] = p.getY() * p.getZ() / zn;
138  ey[2] = -xx/zn;
139 
140  G4double pX = (ex[0]*cfi*stet + ey[0]*sfi*stet + ez[0]*ctet) * pnorm;
141  G4double pY = (ex[1]*cfi*stet + ey[1]*sfi*stet + ez[1]*ctet) * pnorm;
142  G4double pZ = (ex[2]*cfi*stet + ey[2]*sfi*stet + ez[2]*ctet) * pnorm;
143 
144  ThreeVector p1momentum = ThreeVector(pX, pY, pZ);
145  particle1->setMomentum(p1momentum);
146  particle2->setMomentum(-p1momentum);
147  } else { // if(xx < (zz * 1.0e-8)) {
148  G4double momZ = particle1->getMomentum().getZ();
149  G4double pX = momZ * cfi * stet;
150  G4double pY = momZ * sfi * stet;
151  G4double pZ = momZ * ctet;
152 
153  ThreeVector p1momentum(pX, pY, pZ);
154  particle1->setMomentum(p1momentum);
155  particle2->setMomentum(-p1momentum);
156  }
157 
158  // Handle backward scattering here.
159 
160  if((particle1->getType() == Proton && particle2->getType() == Neutron) ||
161  (particle1->getType() == Neutron && particle2->getType() == Proton)) {
162  rndm = Random::shoot();
163  apt = 1.0;
164  if(pl > 800.0) {
165  apt = std::pow(800.0/pl, 2);
166  }
167  if(iexpi == 1 || rndm > 1.0/(1.0 + apt)) {
168  particle1->setType(p2TypeOld);
169  particle2->setType(p1TypeOld);
170  }
171  }
172 
173  // Note: there is no need to update the kinetic energies of the particles,
174  // as this is elastic scattering.
175 
176  fs->addModifiedParticle(particle1);
177  fs->addModifiedParticle(particle2);
178 
179  }
G4double squareTotalEnergyInCM(Particle const *const p1, Particle const *const p2)
const char * p
Definition: xmltok.h:285
const G4INCL::ThreeVector & getMomentum() const
int G4int
Definition: G4Types.hh:78
G4double mag2() const
const XML_Char * s
Definition: expat.h:262
G4double perp2() const
G4double calculateNNAngularSlope(G4double energyCM, G4int iso)
Calculate the slope of the NN DDXS.
G4int getIsospin(const ParticleType t)
Get the isospin of a particle.
T max(const T t1, const T t2)
brief Return the largest of the two arguments
G4INCL::ParticleType getType() const
void setType(ParticleType t)
const G4double twoPi
G4double shoot()
Definition: G4INCLRandom.cc:93
G4double momentumInLab(Particle const *const p1, Particle const *const p2)
gives the momentum in the lab frame of two particles.
double G4double
Definition: G4Types.hh:76
G4int sign(const T t)
const G4double effectiveNucleonMass
G4double getZ() const
virtual void setMomentum(const G4INCL::ThreeVector &momentum)

Here is the call graph for this function:


The documentation for this class was generated from the following files: