Geant4  10.03.p01
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4EmDNAPhysics_option7 Class Reference

#include <G4EmDNAPhysics_option7.hh>

Inheritance diagram for G4EmDNAPhysics_option7:
Collaboration diagram for G4EmDNAPhysics_option7:

Public Member Functions

 G4EmDNAPhysics_option7 (G4int ver=1, const G4String &name="")
 
virtual ~G4EmDNAPhysics_option7 ()
 
virtual void ConstructParticle ()
 
virtual void ConstructProcess ()
 
- Public Member Functions inherited from G4VPhysicsConstructor
 G4VPhysicsConstructor (const G4String &="")
 
 G4VPhysicsConstructor (const G4String &name, G4int physics_type)
 
virtual ~G4VPhysicsConstructor ()
 
void SetPhysicsName (const G4String &="")
 
const G4StringGetPhysicsName () const
 
void SetPhysicsType (G4int)
 
G4int GetPhysicsType () const
 
void SetVerboseLevel (G4int value)
 
G4int GetVerboseLevel () const
 
G4int GetInstanceID () const
 

Additional Inherited Members

- Static Public Member Functions inherited from G4VPhysicsConstructor
static const G4VPCManagerGetSubInstanceManager ()
 
- Protected Member Functions inherited from G4VPhysicsConstructor
G4bool RegisterProcess (G4VProcess *process, G4ParticleDefinition *particle)
 
G4ParticleTable::G4PTblDicIteratorGetParticleIterator () const
 
- Protected Attributes inherited from G4VPhysicsConstructor
G4int verboseLevel
 
G4String namePhysics
 
G4int typePhysics
 
G4ParticleTabletheParticleTable
 
G4int g4vpcInstanceID
 
- Static Protected Attributes inherited from G4VPhysicsConstructor
static G4RUN_DLL G4VPCManager subInstanceManager
 

Detailed Description

Definition at line 37 of file G4EmDNAPhysics_option7.hh.

Constructor & Destructor Documentation

G4EmDNAPhysics_option7::G4EmDNAPhysics_option7 ( G4int  ver = 1,
const G4String name = "" 
)
explicit

Definition at line 94 of file G4EmDNAPhysics_option7.cc.

94  :
95  G4VPhysicsConstructor("G4EmDNAPhysics_option7"), verbose(ver)
96 {
98  param->SetDefaults();
99  param->SetFluo(true);
100  param->SetAuger(true);
101  param->SetAugerCascade(true);
102  param->SetDeexcitationIgnoreCut(true);
103 
105 }
void SetDeexcitationIgnoreCut(G4bool val)
void SetAuger(G4bool val)
void SetAugerCascade(G4bool val)
static G4EmParameters * Instance()
G4VPhysicsConstructor(const G4String &="")
void SetFluo(G4bool val)

Here is the call graph for this function:

G4EmDNAPhysics_option7::~G4EmDNAPhysics_option7 ( )
virtual

Definition at line 109 of file G4EmDNAPhysics_option7.cc.

110 {
111 }

Member Function Documentation

void G4EmDNAPhysics_option7::ConstructParticle ( )
virtual

Implements G4VPhysicsConstructor.

Definition at line 115 of file G4EmDNAPhysics_option7.cc.

116 {
117 // bosons
118  G4Gamma::Gamma();
119 
120 // leptons
123 
124 // baryons
126 
128 
129  G4DNAGenericIonsManager * genericIonsManager;
130  genericIonsManager = G4DNAGenericIonsManager::Instance();
131  genericIonsManager->GetIon("alpha++");
132  genericIonsManager->GetIon("alpha+");
133  genericIonsManager->GetIon("helium");
134  genericIonsManager->GetIon("hydrogen");
135 
136 }
static G4GenericIon * GenericIonDefinition()
Definition: G4GenericIon.cc:88
static G4Proton * Proton()
Definition: G4Proton.cc:93
static G4DNAGenericIonsManager * Instance(void)
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
static G4Positron * Positron()
Definition: G4Positron.cc:94
static G4Electron * Electron()
Definition: G4Electron.cc:94
G4ParticleDefinition * GetIon(const G4String &name)

Here is the call graph for this function:

void G4EmDNAPhysics_option7::ConstructProcess ( )
virtual

Implements G4VPhysicsConstructor.

Definition at line 140 of file G4EmDNAPhysics_option7.cc.

141 {
142  if(verbose > 1)
143  {
144  G4cout << "### " << GetPhysicsName() << " Construct Processes " << G4endl;
145  }
147 
148  auto myParticleIterator=GetParticleIterator();
149  myParticleIterator->reset();
150  while( (*myParticleIterator)() )
151  {
152  G4ParticleDefinition* particle = myParticleIterator->value();
153  G4String particleName = particle->GetParticleName();
154 
155  if (particleName == "e-")
156  {
157  // *** Electron solvation ***
158  // Either kills the electron track or transform the electron to
159  // a solvated electron, depending on whether the chemistry is
160  // activated
161 
162  G4DNAElectronSolvation* solvation =
163  new G4DNAElectronSolvation("e-_G4DNAElectronSolvation");
166  therm->SetHighEnergyLimit(10.*eV); // limit of the Uehara's model
167  solvation->SetEmModel(therm);
168  ph->RegisterProcess(solvation, particle);
169 
170  // *** Elastic scattering ***
171 
172  G4DNAElastic* theDNAElasticProcess =
173  new G4DNAElastic("e-_G4DNAElastic");
176  emElast->SetHighEnergyLimit(1*MeV);
177 // emElast->SelectHighEnergyLimit(1*MeV);
178  theDNAElasticProcess->SetEmModel(emElast);
179  ph->RegisterProcess(theDNAElasticProcess, particle);
180 
181  {
182  // *** Excitation ***
183 
184  G4DNAExcitation* theDNAExcitationProcess =
185  new G4DNAExcitation("e-_G4DNAExcitation");
186  {
189  emExc->SetActivationHighEnergyLimit(10.*keV);
190  theDNAExcitationProcess->SetEmModel(emExc,1);
191  theDNAExcitationProcess->AddEmModel(1, emExc);
192  }
193 
194  {
196  bornExc->SetActivationLowEnergyLimit(10*keV);
197  bornExc->SetActivationHighEnergyLimit(1.*MeV);
198  theDNAExcitationProcess->SetEmModel(bornExc,2);
199  theDNAExcitationProcess->AddEmModel(2, bornExc);
200  }
201 
202  ph->RegisterProcess(theDNAExcitationProcess, particle);
203  }
204 
205  {
206  // *** Ionisation ***
207 
208  G4DNAIonisation* theDNAIonisationProcess =
209  new G4DNAIonisation("e-_G4DNAIonisation");
210 
211  {
213  emIonModel->SetActivationLowEnergyLimit(10.*eV);
214  emIonModel->SetActivationHighEnergyLimit(10.*keV);
215 
216  theDNAIonisationProcess->SetEmModel(emIonModel,1);
217  theDNAIonisationProcess->AddEmModel(1,emIonModel);
218  }
219 
220  {
222  bornIon->SetActivationLowEnergyLimit(10*keV);
223  bornIon->SetActivationHighEnergyLimit(1.*MeV);
224 
225  theDNAIonisationProcess->SetEmModel(bornIon,2);
226  theDNAIonisationProcess->AddEmModel(2,bornIon);
227  }
228 
229  ph->RegisterProcess(theDNAIonisationProcess, particle);
230  }
231 
232  // *** Vibrational excitation ***
233  ph->RegisterProcess(new G4DNAVibExcitation("e-_G4DNAVibExcitation"), particle);
234 
235  // *** Attachment ***
236  ph->RegisterProcess(new G4DNAAttachment("e-_G4DNAAttachment"), particle);
237 
238  } else if ( particleName == "proton" ) {
239  ph->RegisterProcess(new G4DNAElastic("proton_G4DNAElastic"), particle);
240  ph->RegisterProcess(new G4DNAExcitation("proton_G4DNAExcitation"), particle);
241  ph->RegisterProcess(new G4DNAIonisation("proton_G4DNAIonisation"), particle);
242  ph->RegisterProcess(new G4DNAChargeDecrease("proton_G4DNAChargeDecrease"), particle);
243 
244  } else if ( particleName == "hydrogen" ) {
245  ph->RegisterProcess(new G4DNAElastic("hydrogen_G4DNAElastic"), particle);
246  ph->RegisterProcess(new G4DNAExcitation("hydrogen_G4DNAExcitation"), particle);
247  ph->RegisterProcess(new G4DNAIonisation("hydrogen_G4DNAIonisation"), particle);
248  ph->RegisterProcess(new G4DNAChargeIncrease("hydrogen_G4DNAChargeIncrease"), particle);
249 
250  } else if ( particleName == "alpha" ) {
251  ph->RegisterProcess(new G4DNAElastic("alpha_G4DNAElastic"), particle);
252  ph->RegisterProcess(new G4DNAExcitation("alpha_G4DNAExcitation"), particle);
253  ph->RegisterProcess(new G4DNAIonisation("alpha_G4DNAIonisation"), particle);
254  ph->RegisterProcess(new G4DNAChargeDecrease("alpha_G4DNAChargeDecrease"), particle);
255 
256  } else if ( particleName == "alpha+" ) {
257  ph->RegisterProcess(new G4DNAElastic("alpha+_G4DNAElastic"), particle);
258  ph->RegisterProcess(new G4DNAExcitation("alpha+_G4DNAExcitation"), particle);
259  ph->RegisterProcess(new G4DNAIonisation("alpha+_G4DNAIonisation"), particle);
260  ph->RegisterProcess(new G4DNAChargeDecrease("alpha+_G4DNAChargeDecrease"), particle);
261  ph->RegisterProcess(new G4DNAChargeIncrease("alpha+_G4DNAChargeIncrease"), particle);
262 
263  } else if ( particleName == "helium" ) {
264  ph->RegisterProcess(new G4DNAElastic("helium_G4DNAElastic"), particle);
265  ph->RegisterProcess(new G4DNAExcitation("helium_G4DNAExcitation"), particle);
266  ph->RegisterProcess(new G4DNAIonisation("helium_G4DNAIonisation"), particle);
267  ph->RegisterProcess(new G4DNAChargeIncrease("helium_G4DNAChargeIncrease"), particle);
268  }
269  // Extension to HZE proposed by Z. Francis
270  else if ( particleName == "GenericIon" ) {
271  ph->RegisterProcess(new G4DNAIonisation("GenericIon_G4DNAIonisation"), particle);
272  }
273 
274  // Warning : the following particles and processes are needed by EM Physics builders
275  // They are taken from the default Livermore Physics list
276  // These particles are currently not handled by Geant4-DNA
277 
278  // e+
279 
280  else if (particleName == "e+") {
281 
282  // Identical to G4EmStandardPhysics_option3
283 
286  G4eIonisation* eIoni = new G4eIonisation();
287  eIoni->SetStepFunction(0.2, 100*um);
288 
289  ph->RegisterProcess(msc, particle);
290  ph->RegisterProcess(eIoni, particle);
291  ph->RegisterProcess(new G4eBremsstrahlung(), particle);
292  ph->RegisterProcess(new G4eplusAnnihilation(), particle);
293 
294  } else if (particleName == "gamma") {
295 
296  G4double LivermoreHighEnergyLimit = GeV;
297 
298  G4PhotoElectricEffect* thePhotoElectricEffect = new G4PhotoElectricEffect();
299  G4LivermorePhotoElectricModel* theLivermorePhotoElectricModel =
301  theLivermorePhotoElectricModel->SetHighEnergyLimit(LivermoreHighEnergyLimit);
302  thePhotoElectricEffect->AddEmModel(0, theLivermorePhotoElectricModel);
303  ph->RegisterProcess(thePhotoElectricEffect, particle);
304 
305  G4ComptonScattering* theComptonScattering = new G4ComptonScattering();
306  G4LivermoreComptonModel* theLivermoreComptonModel =
308  theLivermoreComptonModel->SetHighEnergyLimit(LivermoreHighEnergyLimit);
309  theComptonScattering->AddEmModel(0, theLivermoreComptonModel);
310  ph->RegisterProcess(theComptonScattering, particle);
311 
312  G4GammaConversion* theGammaConversion = new G4GammaConversion();
313  G4LivermoreGammaConversionModel* theLivermoreGammaConversionModel =
315  theLivermoreGammaConversionModel->SetHighEnergyLimit(LivermoreHighEnergyLimit);
316  theGammaConversion->AddEmModel(0, theLivermoreGammaConversionModel);
317  ph->RegisterProcess(theGammaConversion, particle);
318 
319  G4RayleighScattering* theRayleigh = new G4RayleighScattering();
320  G4LivermoreRayleighModel* theRayleighModel = new G4LivermoreRayleighModel();
321  theRayleighModel->SetHighEnergyLimit(LivermoreHighEnergyLimit);
322  theRayleigh->AddEmModel(0, theRayleighModel);
323  ph->RegisterProcess(theRayleigh, particle);
324  }
325 
326  // Warning : end of particles and processes are needed by EM Physics builders
327 
328  }
329 
330  // Deexcitation
331  //
334 }
void SetActivationHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:738
#define G4DNABornIonisationModel
static G4LossTableManager * Instance()
void SetStepFunction(G4double v1, G4double v2, G4bool lock=true)
const G4String & GetParticleName() const
G4DNABornExcitationModel1 G4DNABornExcitationModel
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:724
G4ParticleTable::G4PTblDicIterator * GetParticleIterator() const
void SetEmModel(G4VEmModel *, G4int index=1)
G4GLOB_DLL std::ostream G4cout
static constexpr double um
Definition: G4SIunits.hh:113
G4bool RegisterProcess(G4VProcess *process, G4ParticleDefinition *particle)
static constexpr double eV
Definition: G4SIunits.hh:215
const G4String & GetPhysicsName() const
void SetActivationLowEnergyLimit(G4double)
Definition: G4VEmModel.hh:745
void AddEmModel(G4int, G4VEmModel *, const G4Region *region=nullptr)
G4TDNAOneStepThermalizationModel< DNA::Penetration::Meesungnoen2002 > G4DNAOneStepThermalizationModel
static G4PhysicsListHelper * GetPhysicsListHelper()
static constexpr double GeV
Definition: G4SIunits.hh:217
#define G4endl
Definition: G4ios.hh:61
static constexpr double MeV
Definition: G4SIunits.hh:214
double G4double
Definition: G4Types.hh:76
static constexpr double keV
Definition: G4SIunits.hh:216
void SetAtomDeexcitation(G4VAtomDeexcitation *)
void SetStepLimitType(G4MscStepLimitType val)

Here is the call graph for this function:


The documentation for this class was generated from the following files: