Geant4  10.03.p01
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4DNAOneStepThermalizationModel.hh
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4DNAOneStepThermalizationModel.hh 101354 2016-11-15 08:27:51Z gcosmo $
27 //
28 // Author: Mathieu Karamitros
29 
30 // The code is developed in the framework of the ESA AO7146
31 //
32 // We would be very happy hearing from you, send us your feedback! :)
33 //
34 // In order for Geant4-DNA to be maintained and still open-source,
35 // article citations are crucial.
36 // If you use Geant4-DNA chemistry and you publish papers about your software,
37 // in addition to the general paper on Geant4-DNA:
38 //
39 // Int. J. Model. Simul. Sci. Comput. 1 (2010) 157–178
40 //
41 // we would be very happy if you could please also cite the following
42 // reference papers on chemistry:
43 //
44 // J. Comput. Phys. 274 (2014) 841-882
45 // Prog. Nucl. Sci. Tec. 2 (2011) 503-508
46 
47 #ifndef G4DNAOneStepThermalizationModel_
48 #define G4DNAOneStepThermalizationModel_
49 
50 #include "G4VEmModel.hh"
51 
52 class G4ITNavigator;
53 class G4Navigator;
54 
55 namespace DNA{
56  namespace Penetration{
57  //-----------------------
58  /*
59  * Article: Jintana Meesungnoen, Jean-Paul Jay-Gerin,
60  * Abdelali Filali-Mouhim, and Samlee Mankhetkorn (2002)
61  * Low-Energy Electron Penetration Range in Liquid Water.
62  * Radiation Research: November 2002, Vol. 158, No. 5, pp.657-660.
63  */
65  static void GetPenetration(G4double energy,
66  G4ThreeVector& displacement);
67  static double GetRmean(double energy);
68  //-----
69  // Polynomial fit of Meesungnoen, 2002
70  static const double gCoeff[13];
71  };
72 
73  //-----------------------
74  /*
75  * Article: Terrissol M, Beaudre A (1990) Simulation of space and time
76  * evolution of radiolytic species induced by electrons in water.
77  * Radiat Prot Dosimetry 31:171–175
78  */
79  struct Terrisol1990{
80  static void GetPenetration(G4double energy,
81  G4ThreeVector& displacement);
82  static double GetRmean(double energy);
83  static double Get3DStdDeviation(double energy);
84  //-----
85  // Terrisol, 1990
86  static const double gEnergies_T1990[11];
87  static const double gStdDev_T1990[11];
88  };
89  }
90 }
91 
99 template<typename MODEL=DNA::Penetration::Meesungnoen2002>
101 {
102 public:
103  typedef MODEL Model;
105  const G4String& nam =
106  "DNAOneStepThermalizationModel");
108 
109  virtual void Initialise(const G4ParticleDefinition*, const G4DataVector&);
110 
111  virtual G4double CrossSectionPerVolume(const G4Material* material,
112  const G4ParticleDefinition* p,
113  G4double ekin,
114  G4double emin,
115  G4double emax);
116 
117  virtual void SampleSecondaries(std::vector<G4DynamicParticle*>*,
118  const G4MaterialCutsCouple*,
119  const G4DynamicParticle*,
120  G4double tmin,
121  G4double maxEnergy);
122 
123  inline void SetVerbose(int flag){
124  fVerboseLevel = flag;
125  }
126 
128  G4ThreeVector& displacement);
129 
130  double GetRmean(double energy);
131 
132 protected:
133  const std::vector<G4double>* fpWaterDensity;
134 
139 
140 private:
142  operator=(const G4TDNAOneStepThermalizationModel &right);
144 };
145 
147 
149 
150 // typedef G4TDNAOneStepThermalizationModel<DNA::Penetration::Terrisol1990> G4DNAOneStepThermalizationModel;
151 // Note: if you use the above distribution, it would be
152 // better to follow the electrons down to 6 eV and only then apply
153 // the one step thermalization
154 #endif
const std::vector< G4double > * fpWaterDensity
const char * p
Definition: xmltok.h:285
G4TDNAOneStepThermalizationModel(const G4ParticleDefinition *p=0, const G4String &nam="DNAOneStepThermalizationModel")
int G4int
Definition: G4Types.hh:78
void GetPenetration(G4double energy, G4ThreeVector &displacement)
bool G4bool
Definition: G4Types.hh:79
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
static void GetPenetration(G4double energy, G4ThreeVector &displacement)
virtual G4double CrossSectionPerVolume(const G4Material *material, const G4ParticleDefinition *p, G4double ekin, G4double emin, G4double emax)
static const G4double emax
G4TDNAOneStepThermalizationModel< DNA::Penetration::Meesungnoen2002 > G4DNAOneStepThermalizationModel
static void GetPenetration(G4double energy, G4ThreeVector &displacement)
G4double energy(const ThreeVector &p, const G4double m)
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
double G4double
Definition: G4Types.hh:76
static double Get3DStdDeviation(double energy)