Geant4  10.03.p01
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4EmDNAPhysics_option5 Class Reference

#include <G4EmDNAPhysics_option5.hh>

Inheritance diagram for G4EmDNAPhysics_option5:
Collaboration diagram for G4EmDNAPhysics_option5:

Public Member Functions

 G4EmDNAPhysics_option5 (G4int ver=1, const G4String &name="")
 
virtual ~G4EmDNAPhysics_option5 ()
 
virtual void ConstructParticle ()
 
virtual void ConstructProcess ()
 
- Public Member Functions inherited from G4VPhysicsConstructor
 G4VPhysicsConstructor (const G4String &="")
 
 G4VPhysicsConstructor (const G4String &name, G4int physics_type)
 
virtual ~G4VPhysicsConstructor ()
 
void SetPhysicsName (const G4String &="")
 
const G4StringGetPhysicsName () const
 
void SetPhysicsType (G4int)
 
G4int GetPhysicsType () const
 
void SetVerboseLevel (G4int value)
 
G4int GetVerboseLevel () const
 
G4int GetInstanceID () const
 

Additional Inherited Members

- Static Public Member Functions inherited from G4VPhysicsConstructor
static const G4VPCManagerGetSubInstanceManager ()
 
- Protected Member Functions inherited from G4VPhysicsConstructor
G4bool RegisterProcess (G4VProcess *process, G4ParticleDefinition *particle)
 
G4ParticleTable::G4PTblDicIteratorGetParticleIterator () const
 
- Protected Attributes inherited from G4VPhysicsConstructor
G4int verboseLevel
 
G4String namePhysics
 
G4int typePhysics
 
G4ParticleTabletheParticleTable
 
G4int g4vpcInstanceID
 
- Static Protected Attributes inherited from G4VPhysicsConstructor
static G4RUN_DLL G4VPCManager subInstanceManager
 

Detailed Description

Definition at line 37 of file G4EmDNAPhysics_option5.hh.

Constructor & Destructor Documentation

G4EmDNAPhysics_option5::G4EmDNAPhysics_option5 ( G4int  ver = 1,
const G4String name = "" 
)
explicit

Definition at line 94 of file G4EmDNAPhysics_option5.cc.

94  :
95  G4VPhysicsConstructor("G4EmDNAPhysics_option5"), verbose(ver)
96 {
98  param->SetDefaults();
99  param->SetFluo(true);
100  param->SetAuger(true);
101  param->SetAugerCascade(true);
102  param->SetDeexcitationIgnoreCut(true);
103 
105 }
void SetDeexcitationIgnoreCut(G4bool val)
void SetAuger(G4bool val)
void SetAugerCascade(G4bool val)
static G4EmParameters * Instance()
G4VPhysicsConstructor(const G4String &="")
void SetFluo(G4bool val)

Here is the call graph for this function:

G4EmDNAPhysics_option5::~G4EmDNAPhysics_option5 ( )
virtual

Definition at line 109 of file G4EmDNAPhysics_option5.cc.

110 {
111 }

Member Function Documentation

void G4EmDNAPhysics_option5::ConstructParticle ( )
virtual

Implements G4VPhysicsConstructor.

Definition at line 115 of file G4EmDNAPhysics_option5.cc.

116 {
117 // bosons
118  G4Gamma::Gamma();
119 
120 // leptons
123 
124 // baryons
126 
128 
129  G4DNAGenericIonsManager * genericIonsManager;
130  genericIonsManager = G4DNAGenericIonsManager::Instance();
131  genericIonsManager->GetIon("alpha++");
132  genericIonsManager->GetIon("alpha+");
133  genericIonsManager->GetIon("helium");
134  genericIonsManager->GetIon("hydrogen");
135 
136 }
static G4GenericIon * GenericIonDefinition()
Definition: G4GenericIon.cc:88
static G4Proton * Proton()
Definition: G4Proton.cc:93
static G4DNAGenericIonsManager * Instance(void)
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
static G4Positron * Positron()
Definition: G4Positron.cc:94
static G4Electron * Electron()
Definition: G4Electron.cc:94
G4ParticleDefinition * GetIon(const G4String &name)

Here is the call graph for this function:

void G4EmDNAPhysics_option5::ConstructProcess ( )
virtual

Implements G4VPhysicsConstructor.

Definition at line 140 of file G4EmDNAPhysics_option5.cc.

141 {
142  if(verbose > 1)
143  {
144  G4cout << "### " << GetPhysicsName() << " Construct Processes " << G4endl;
145  }
147 
148  auto myParticleIterator=GetParticleIterator();
149  myParticleIterator->reset();
150  while( (*myParticleIterator)() )
151  {
152  G4ParticleDefinition* particle = myParticleIterator->value();
153  G4String particleName = particle->GetParticleName();
154 
155  if (particleName == "e-")
156  {
157  // *** Solvation ***
158 
159  G4DNAElectronSolvation* solvation =
160  new G4DNAElectronSolvation("e-_G4DNAElectronSolvation");
163  therm->SetHighEnergyLimit(10.*eV); // limit of the Uehara's model
164  solvation->SetEmModel(therm);
165  ph->RegisterProcess(solvation, particle);
166 
167  // *** Elastic scattering ***
168  G4DNAElastic* theDNAElasticProcess = new G4DNAElastic("e-_G4DNAElastic");
169  theDNAElasticProcess->SetEmModel(new G4DNAUeharaScreenedRutherfordElasticModel());
170  ((G4DNAUeharaScreenedRutherfordElasticModel*)(theDNAElasticProcess->EmModel()))->SelectFasterComputation(true);
171  ph->RegisterProcess(theDNAElasticProcess, particle);
172 
173  // *** Excitation ***
174  G4DNAExcitation* theDNAExcitationProcess = new G4DNAExcitation("e-_G4DNAExcitation");
175  theDNAExcitationProcess->SetEmModel(new G4DNAEmfietzoglouExcitationModel());
176  ph->RegisterProcess(theDNAExcitationProcess, particle);
177 
178  // *** Ionisation ***
179  G4DNAIonisation* theDNAIonisationProcess = new G4DNAIonisation("e-_G4DNAIonisation");
180  theDNAIonisationProcess->SetEmModel(new G4DNAEmfietzoglouIonisationModel());
181  ((G4DNAEmfietzoglouIonisationModel*)(theDNAIonisationProcess->EmModel()))->SelectFasterComputation(true);
182  ph->RegisterProcess(theDNAIonisationProcess, particle);
183 
184  // *** Vibrational excitation ***
185  //ph->RegisterProcess(new G4DNAVibExcitation("e-_G4DNAVibExcitation"), particle);
186 
187  // *** Attachment ***
188  //ph->RegisterProcess(new G4DNAAttachment("e-_G4DNAAttachment"), particle);
189 
190  } else if ( particleName == "proton" ) {
191 
192  ph->RegisterProcess(new G4DNAExcitation("proton_G4DNAExcitation"), particle);
193 
194  G4DNAIonisation* theDNAIonisationProcess = new G4DNAIonisation("proton_G4DNAIonisation");
195 
196  G4VEmModel* mod1;
198  mod1->SetLowEnergyLimit(0*eV);
199  mod1->SetHighEnergyLimit(500*keV);
200 
201  G4VEmModel* mod2;
202  mod2= new G4DNABornIonisationModel();
203  mod2->SetLowEnergyLimit(500*keV);
204  mod2->SetHighEnergyLimit(100*MeV);
205 
206  theDNAIonisationProcess->SetEmModel(mod1,1);
207  theDNAIonisationProcess->SetEmModel(mod2,2);
208  ((G4DNABornIonisationModel*)(theDNAIonisationProcess->EmModel(2)))->SelectFasterComputation(true);
209 
210  ph->RegisterProcess(theDNAIonisationProcess, particle);
211 
212  ph->RegisterProcess(new G4DNAChargeDecrease("proton_G4DNAChargeDecrease"), particle);
213 
214  } else if ( particleName == "hydrogen" ) {
215 
216  ph->RegisterProcess(new G4DNAExcitation("hydrogen_G4DNAExcitation"), particle);
217 
218  //ph->RegisterProcess(new G4DNAIonisation("hydrogen_G4DNAIonisation"), particle);
219  G4DNAIonisation* theDNAIonisationProcess = new G4DNAIonisation("hydrogen_G4DNAIonisation");
220  theDNAIonisationProcess->SetEmModel(new G4DNARuddIonisationExtendedModel());
221  ph->RegisterProcess(theDNAIonisationProcess, particle);
222 
223  ph->RegisterProcess(new G4DNAChargeIncrease("hydrogen_G4DNAChargeIncrease"), particle);
224 
225  } else if ( particleName == "alpha" ) {
226 
227  ph->RegisterProcess(new G4DNAExcitation("alpha_G4DNAExcitation"), particle);
228 
229  //ph->RegisterProcess(new G4DNAIonisation("alpha_G4DNAIonisation"), particle);
230  G4DNAIonisation* theDNAIonisationProcess = new G4DNAIonisation("alpha_G4DNAIonisation");
231  theDNAIonisationProcess->SetEmModel(new G4DNARuddIonisationExtendedModel());
232  ph->RegisterProcess(theDNAIonisationProcess, particle);
233 
234  ph->RegisterProcess(new G4DNAChargeDecrease("alpha_G4DNAChargeDecrease"), particle);
235 
236  } else if ( particleName == "alpha+" ) {
237 
238  ph->RegisterProcess(new G4DNAExcitation("alpha+_G4DNAExcitation"), particle);
239 
240  //ph->RegisterProcess(new G4DNAIonisation("alpha+_G4DNAIonisation"), particle);
241  G4DNAIonisation* theDNAIonisationProcess = new G4DNAIonisation("alpha+_G4DNAIonisation");
242  theDNAIonisationProcess->SetEmModel(new G4DNARuddIonisationExtendedModel());
243  ph->RegisterProcess(theDNAIonisationProcess, particle);
244 
245  ph->RegisterProcess(new G4DNAChargeDecrease("alpha+_G4DNAChargeDecrease"), particle);
246  ph->RegisterProcess(new G4DNAChargeIncrease("alpha+_G4DNAChargeIncrease"), particle);
247 
248  } else if ( particleName == "helium" ) {
249 
250  ph->RegisterProcess(new G4DNAExcitation("helium_G4DNAExcitation"), particle);
251 
252  //ph->RegisterProcess(new G4DNAIonisation("helium_G4DNAIonisation"), particle);
253  G4DNAIonisation* theDNAIonisationProcess = new G4DNAIonisation("helium_G4DNAIonisation");
254  theDNAIonisationProcess->SetEmModel(new G4DNARuddIonisationExtendedModel());
255  ph->RegisterProcess(theDNAIonisationProcess, particle);
256 
257  ph->RegisterProcess(new G4DNAChargeIncrease("helium_G4DNAChargeIncrease"), particle);
258 
259  // Extension to HZE proposed by Z. Francis
260 
261  } else if ( particleName == "GenericIon" ) {
262  ph->RegisterProcess(new G4DNAIonisation("GenericIon_G4DNAIonisation"), particle);
263  }
264 
265  // Warning : the following particles and processes are needed by EM Physics builders
266  // They are taken from the default Livermore Physics list
267  // These particles are currently not handled by Geant4-DNA
268 
269  // e+
270 
271  else if (particleName == "e+") {
272 
273  // Identical to G4EmStandardPhysics_option3
274 
277  G4eIonisation* eIoni = new G4eIonisation();
278  eIoni->SetStepFunction(0.2, 100*um);
279 
280  ph->RegisterProcess(msc, particle);
281  ph->RegisterProcess(eIoni, particle);
282  ph->RegisterProcess(new G4eBremsstrahlung(), particle);
283  ph->RegisterProcess(new G4eplusAnnihilation(), particle);
284 
285  } else if (particleName == "gamma") {
286 
287  G4double LivermoreHighEnergyLimit = GeV;
288 
289  G4PhotoElectricEffect* thePhotoElectricEffect = new G4PhotoElectricEffect();
290  G4LivermorePhotoElectricModel* theLivermorePhotoElectricModel =
292  theLivermorePhotoElectricModel->SetHighEnergyLimit(LivermoreHighEnergyLimit);
293  thePhotoElectricEffect->AddEmModel(0, theLivermorePhotoElectricModel);
294  ph->RegisterProcess(thePhotoElectricEffect, particle);
295 
296  G4ComptonScattering* theComptonScattering = new G4ComptonScattering();
297  G4LivermoreComptonModel* theLivermoreComptonModel =
299  theLivermoreComptonModel->SetHighEnergyLimit(LivermoreHighEnergyLimit);
300  theComptonScattering->AddEmModel(0, theLivermoreComptonModel);
301  ph->RegisterProcess(theComptonScattering, particle);
302 
303  G4GammaConversion* theGammaConversion = new G4GammaConversion();
304  G4LivermoreGammaConversionModel* theLivermoreGammaConversionModel =
306  theLivermoreGammaConversionModel->SetHighEnergyLimit(LivermoreHighEnergyLimit);
307  theGammaConversion->AddEmModel(0, theLivermoreGammaConversionModel);
308  ph->RegisterProcess(theGammaConversion, particle);
309 
310  G4RayleighScattering* theRayleigh = new G4RayleighScattering();
311  G4LivermoreRayleighModel* theRayleighModel = new G4LivermoreRayleighModel();
312  theRayleighModel->SetHighEnergyLimit(LivermoreHighEnergyLimit);
313  theRayleigh->AddEmModel(0, theRayleighModel);
314  ph->RegisterProcess(theRayleigh, particle);
315  }
316 
317  // Warning : end of particles and processes are needed by EM Physics builders
318 
319  }
320 
321  // Deexcitation
322  //
325 }
#define G4DNABornIonisationModel
static G4LossTableManager * Instance()
G4VEmModel * EmModel(G4int index=1) const
void SetStepFunction(G4double v1, G4double v2, G4bool lock=true)
const G4String & GetParticleName() const
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:724
G4ParticleTable::G4PTblDicIterator * GetParticleIterator() const
void SetEmModel(G4VEmModel *, G4int index=1)
G4GLOB_DLL std::ostream G4cout
static constexpr double um
Definition: G4SIunits.hh:113
G4bool RegisterProcess(G4VProcess *process, G4ParticleDefinition *particle)
static constexpr double eV
Definition: G4SIunits.hh:215
const G4String & GetPhysicsName() const
void AddEmModel(G4int, G4VEmModel *, const G4Region *region=nullptr)
G4TDNAOneStepThermalizationModel< DNA::Penetration::Meesungnoen2002 > G4DNAOneStepThermalizationModel
static G4PhysicsListHelper * GetPhysicsListHelper()
static constexpr double GeV
Definition: G4SIunits.hh:217
#define G4endl
Definition: G4ios.hh:61
static constexpr double MeV
Definition: G4SIunits.hh:214
double G4double
Definition: G4Types.hh:76
void SetLowEnergyLimit(G4double)
Definition: G4VEmModel.hh:731
static constexpr double keV
Definition: G4SIunits.hh:216
void SetAtomDeexcitation(G4VAtomDeexcitation *)
void SetStepLimitType(G4MscStepLimitType val)

Here is the call graph for this function:


The documentation for this class was generated from the following files: