Geant4  10.03.p01
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4UniversalFluctuation.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4UniversalFluctuation.cc 98942 2016-08-22 14:46:10Z gcosmo $
27 //
28 // -------------------------------------------------------------------
29 //
30 // GEANT4 Class file
31 //
32 //
33 // File name: G4UniversalFluctuation
34 //
35 // Author: Laszlo Urban
36 //
37 // Creation date: 03.01.2002
38 //
39 // Modifications:
40 //
41 // 28-12-02 add method Dispersion (V.Ivanchenko)
42 // 07-02-03 change signature (V.Ivanchenko)
43 // 13-02-03 Add name (V.Ivanchenko)
44 // 16-10-03 Changed interface to Initialisation (V.Ivanchenko)
45 // 07-11-03 Fix problem of rounding of double in G4UniversalFluctuations
46 // 06-02-04 Add control on big sigma > 2*meanLoss (V.Ivanchenko)
47 // 26-04-04 Comment out the case of very small step (V.Ivanchenko)
48 // 07-02-05 define problim = 5.e-3 (mma)
49 // 03-05-05 conditions of Gaussian fluctuation changed (bugfix)
50 // + smearing for very small loss (L.Urban)
51 // 03-10-05 energy dependent rate -> cut dependence of the
52 // distribution is much weaker (L.Urban)
53 // 17-10-05 correction for very small loss (L.Urban)
54 // 20-03-07 'GLANDZ' part rewritten completely, no 'very small loss'
55 // regime any more (L.Urban)
56 // 03-04-07 correction to get better width of eloss distr.(L.Urban)
57 // 13-07-07 add protection for very small step or low-density material (VI)
58 // 19-03-09 new width correction (does not depend on previous steps) (L.Urban)
59 // 20-03-09 modification in the width correction (L.Urban)
60 // 14-06-10 fixed tail distribution - do not use uniform function (L.Urban)
61 // 08-08-10 width correction algorithm has bee modified -->
62 // better results for thin targets (L.Urban)
63 // 06-02-11 correction for very small losses (L.Urban)
64 //
65 
66 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
67 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
68 
70 #include "G4PhysicalConstants.hh"
71 #include "G4SystemOfUnits.hh"
72 #include "Randomize.hh"
73 #include "G4Poisson.hh"
74 #include "G4Step.hh"
75 #include "G4Material.hh"
76 #include "G4MaterialCutsCouple.hh"
77 #include "G4DynamicParticle.hh"
78 #include "G4ParticleDefinition.hh"
79 #include "G4Log.hh"
80 #include "G4Exp.hh"
81 
82 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
83 
84 using namespace std;
85 
88  particle(0),
89  minNumberInteractionsBohr(10.0),
90  minLoss(10.*eV),
91  nmaxCont(16.),
92  rate(0.55),
93  fw(4.)
94 {
95  lastMaterial = 0;
96 
97  particleMass = chargeSquare = ipotFluct = electronDensity = f1Fluct = f2Fluct
98  = e1Fluct = e2Fluct = e1LogFluct = e2LogFluct = ipotLogFluct = e0 = esmall
99  = e1 = e2 = 0;
100  m_Inv_particleMass = m_massrate = DBL_MAX;
101  sizearray = 30;
102  rndmarray = new G4double[30];
103 }
104 
105 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
106 
108 {
109  delete [] rndmarray;
110 }
111 
112 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
113 
115 {
116  particle = part;
117  particleMass = part->GetPDGMass();
118  G4double q = part->GetPDGCharge()/eplus;
119 
120  // Derived quantities
121  m_Inv_particleMass = 1.0 / particleMass;
122  m_massrate = electron_mass_c2 * m_Inv_particleMass ;
123  chargeSquare = q*q;
124 }
125 
126 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
127 
128 G4double
130  const G4DynamicParticle* dp,
131  G4double tmax,
132  G4double length,
133  G4double averageLoss)
134 {
135  // Calculate actual loss from the mean loss.
136  // The model used to get the fluctuations is essentially the same
137  // as in Glandz in Geant3 (Cern program library W5013, phys332).
138  // L. Urban et al. NIM A362, p.416 (1995) and Geant4 Physics Reference Manual
139 
140  // shortcut for very small loss or from a step nearly equal to the range
141  // (out of validity of the model)
142  //
143  G4double meanLoss = averageLoss;
144  G4double tkin = dp->GetKineticEnergy();
145  //G4cout<< "Emean= "<< meanLoss<< " tmax= "<< tmax<< " L= "<<length<<G4endl;
146  if (meanLoss < minLoss) { return meanLoss; }
147 
148  if(dp->GetDefinition() != particle) { InitialiseMe(dp->GetDefinition()); }
149 
150  CLHEP::HepRandomEngine* rndmEngineF = G4Random::getTheEngine();
151 
152  G4double tau = tkin * m_Inv_particleMass;
153  G4double gam = tau + 1.0;
154  G4double gam2 = gam*gam;
155  G4double beta2 = tau*(tau + 2.0)/gam2;
156 
157  G4double loss(0.), siga(0.);
158 
159  const G4Material* material = couple->GetMaterial();
160 
161  // Gaussian regime
162  // for heavy particles only and conditions
163  // for Gauusian fluct. has been changed
164  //
165  if ((particleMass > electron_mass_c2) &&
166  (meanLoss >= minNumberInteractionsBohr*tmax))
167  {
168  G4double tmaxkine = 2.*electron_mass_c2*beta2*gam2/
169  (1.+m_massrate*(2.*gam+m_massrate)) ;
170  if (tmaxkine <= 2.*tmax)
171  {
172  electronDensity = material->GetElectronDensity();
173  siga = sqrt((1.0/beta2 - 0.5) * twopi_mc2_rcl2 * tmax * length
174  * electronDensity * chargeSquare);
175 
176  G4double sn = meanLoss/siga;
177 
178  // thick target case
179  if (sn >= 2.0) {
180 
181  G4double twomeanLoss = meanLoss + meanLoss;
182  do {
183  loss = G4RandGauss::shoot(rndmEngineF,meanLoss,siga);
184  // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
185  } while (0.0 > loss || twomeanLoss < loss);
186 
187  // Gamma distribution
188  } else {
189 
190  G4double neff = sn*sn;
191  loss = meanLoss*G4RandGamma::shoot(rndmEngineF,neff,1.0)/neff;
192  }
193  //G4cout << "Gauss: " << loss << G4endl;
194  return loss;
195  }
196  }
197 
198  // Glandz regime : initialisation
199  //
200  if (material != lastMaterial) {
201  f1Fluct = material->GetIonisation()->GetF1fluct();
202  f2Fluct = material->GetIonisation()->GetF2fluct();
203  e1Fluct = material->GetIonisation()->GetEnergy1fluct();
204  e2Fluct = material->GetIonisation()->GetEnergy2fluct();
205  e1LogFluct = material->GetIonisation()->GetLogEnergy1fluct();
206  e2LogFluct = material->GetIonisation()->GetLogEnergy2fluct();
207  ipotFluct = material->GetIonisation()->GetMeanExcitationEnergy();
208  ipotLogFluct = material->GetIonisation()->GetLogMeanExcEnergy();
209  e0 = material->GetIonisation()->GetEnergy0fluct();
210  esmall = 0.5*sqrt(e0*ipotFluct);
211  lastMaterial = material;
212  }
213 
214  // very small step or low-density material
215  if(tmax <= e0) { return meanLoss; }
216 
217  G4double losstot = 0.;
218  G4int nstep = 1;
219  if(meanLoss < 25.*ipotFluct)
220  {
221  if(rndmEngineF->flat()*ipotFluct< 0.04*meanLoss)
222  { nstep = 1; }
223  else
224  {
225  nstep = 2;
226  meanLoss *= 0.5;
227  }
228  }
229 
230  G4double a1, a2, a3;
231  for (G4int istep=0; istep < nstep; ++istep) {
232 
233  loss = a1 = a2 = a3 = 0.;
234 
235  if(tmax > ipotFluct) {
236  G4double w2 = G4Log(2.*electron_mass_c2*beta2*gam2)-beta2;
237 
238  if(w2 > ipotLogFluct) {
239  G4double C = meanLoss*(1.-rate)/(w2-ipotLogFluct);
240  a1 = C*f1Fluct*(w2-e1LogFluct)/e1Fluct;
241  if(w2 > e2LogFluct) {
242  a2 = C*f2Fluct*(w2-e2LogFluct)/e2Fluct;
243  }
244  if(a1 < nmaxCont) {
245  //small energy loss
246  G4double sa1 = sqrt(a1);
247  if(rndmEngineF->flat() < G4Exp(-sa1))
248  {
249  e1 = esmall;
250  a1 = meanLoss*(1.-rate)/e1;
251  a2 = 0.;
252  e2 = e2Fluct;
253  }
254  else
255  {
256  a1 = sa1 ;
257  e1 = sa1*e1Fluct;
258  e2 = e2Fluct;
259  }
260 
261  } else {
262  //not small energy loss
263  //correction to get better fwhm value
264  a1 /= fw;
265  e1 = fw*e1Fluct;
266  e2 = e2Fluct;
267  }
268  }
269  }
270 
271  G4double w1 = tmax/e0;
272  if(tmax > e0) {
273  a3 = rate*meanLoss*(tmax-e0)/(e0*tmax*G4Log(w1));
274  if(a1+a2 <= 0.) {
275  a3 /= rate;
276  }
277  }
278  //'nearly' Gaussian fluctuation if a1>nmaxCont&&a2>nmaxCont&&a3>nmaxCont
279  G4double emean = 0.;
280  G4double sig2e = 0.;
281 
282  // excitation of type 1
283  AddExcitation(rndmEngineF, a1, e1, emean, loss, sig2e);
284 
285  // excitation of type 2
286  AddExcitation(rndmEngineF, a2, e2, emean, loss, sig2e);
287 
288  if(emean > 0.0) { SampleGauss(rndmEngineF, emean, sig2e, loss); }
289 
290  // ionisation
291  if(a3 > 0.) {
292  emean = 0.;
293  sig2e = 0.;
294  G4double p3 = a3;
295  G4double alfa = 1.;
296  if(a3 > nmaxCont)
297  {
298  alfa = w1*(nmaxCont+a3)/(w1*nmaxCont+a3);
299  G4double alfa1 = alfa*G4Log(alfa)/(alfa-1.);
300  G4double namean = a3*w1*(alfa-1.)/((w1-1.)*alfa);
301  emean += namean*e0*alfa1;
302  sig2e += e0*e0*namean*(alfa-alfa1*alfa1);
303  p3 = a3-namean;
304  }
305 
306  G4double w2 = alfa*e0;
307  G4double w = (tmax-w2)/tmax;
308  if(w > 0.0) {
309  const G4int nb = G4Poisson(p3);
310  if(nb > 0) {
311  if(nb > sizearray) {
312  sizearray = nb;
313  delete [] rndmarray;
314  rndmarray = new G4double[nb];
315  }
316  rndmEngineF->flatArray(nb, rndmarray);
317  for (G4int k=0; k<nb; ++k) { loss += w2/(1.-w*rndmarray[k]); }
318  }
319  }
320  if(emean > 0.0) { SampleGauss(rndmEngineF, emean, sig2e, loss); }
321  }
322  losstot += loss;
323  }
324  //G4cout << "Vavilov: " << losstot << " Nstep= " << nstep << G4endl;
325 
326  return losstot;
327 
328 }
329 
330 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
331 
332 
334  const G4Material* material,
335  const G4DynamicParticle* dp,
336  G4double tmax,
337  G4double length)
338 {
339  if(dp->GetDefinition() != particle) { InitialiseMe(dp->GetDefinition()); }
340 
341  electronDensity = material->GetElectronDensity();
342 
343  G4double gam = (dp->GetKineticEnergy())*m_Inv_particleMass + 1.0;
344  G4double beta2 = 1.0 - 1.0/(gam*gam);
345 
346  G4double siga = (1.0/beta2 - 0.5) * twopi_mc2_rcl2 * tmax * length
347  * electronDensity * chargeSquare;
348 
349  return siga;
350 }
351 
352 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
353 
354 void
356  G4double q2)
357 {
358  if(part != particle) {
359  particle = part;
360  particleMass = part->GetPDGMass();
361 
362  // Derived quantities
363  if( particleMass != 0.0 ){
364  m_Inv_particleMass = 1.0 / particleMass;
365  m_massrate = electron_mass_c2 * m_Inv_particleMass ;
366  }else{
367  m_Inv_particleMass = DBL_MAX;
368  m_massrate = DBL_MAX;
369  }
370  }
371  chargeSquare = q2;
372 }
373 
374 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
ThreeVector shoot(const G4int Ap, const G4int Af)
G4IonisParamMat * GetIonisation() const
Definition: G4Material.hh:226
G4long G4Poisson(G4double mean)
Definition: G4Poisson.hh:51
G4double GetKineticEnergy() const
virtual G4double Dispersion(const G4Material *, const G4DynamicParticle *, G4double, G4double) override
G4double GetEnergy2fluct() const
static constexpr double twopi_mc2_rcl2
virtual G4double SampleFluctuations(const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double, G4double, G4double) override
G4double GetLogEnergy2fluct() const
G4UniversalFluctuation(const G4String &nam="UniFluc")
G4ParticleDefinition * GetDefinition() const
virtual double flat()=0
double C(double temp)
G4double GetLogMeanExcEnergy() const
int G4int
Definition: G4Types.hh:78
static constexpr double electron_mass_c2
G4double GetEnergy0fluct() const
virtual void SetParticleAndCharge(const G4ParticleDefinition *, G4double q2) final
G4double GetElectronDensity() const
Definition: G4Material.hh:217
static constexpr double eplus
Definition: G4SIunits.hh:199
static constexpr double eV
Definition: G4SIunits.hh:215
G4double G4Log(G4double x)
Definition: G4Log.hh:230
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
virtual void InitialiseMe(const G4ParticleDefinition *) final
G4double GetLogEnergy1fluct() const
G4double GetPDGMass() const
G4double GetMeanExcitationEnergy() const
G4double GetF2fluct() const
double G4double
Definition: G4Types.hh:76
G4double GetPDGCharge() const
virtual void flatArray(const int size, double *vect)=0
#define DBL_MAX
Definition: templates.hh:83
G4double GetF1fluct() const
const G4Material * GetMaterial() const
G4double GetEnergy1fluct() const