Geant4  10.03.p01
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4QMDMeanField.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // 081120 Add Update by T. Koi
27 //
28 
29 #include <map>
30 #include <algorithm>
31 #include <numeric>
32 
33 #include <cmath>
34 #include <CLHEP/Random/Stat.h>
35 
36 #include "G4QMDMeanField.hh"
37 #include "G4QMDParameters.hh"
38 #include "G4Exp.hh"
39 #include "G4Pow.hh"
40 #include "G4PhysicalConstants.hh"
41 #include "Randomize.hh"
42 
44 : rclds ( 4.0 ) // distance for cluster judgement
45 , epsx ( -20.0 ) // gauss term
46 , epscl ( 0.0001 ) // coulomb term
47 , irelcr ( 1 )
48 {
49 
51  wl = parameters->Get_wl();
52  cl = parameters->Get_cl();
53  rho0 = parameters->Get_rho0();
54  hbc = parameters->Get_hbc();
55  gamm = parameters->Get_gamm();
56 
57  cpw = parameters->Get_cpw();
58  cph = parameters->Get_cph();
59  cpc = parameters->Get_cpc();
60 
61  c0 = parameters->Get_c0();
62  c3 = parameters->Get_c3();
63  cs = parameters->Get_cs();
64 
65 // distance
66  c0w = 1.0/4.0/wl;
67  //c3w = 1.0/4.0/wl; //no need
68  c0sw = std::sqrt( c0w );
69  clw = 2.0 / std::sqrt ( 4.0 * pi * wl );
70 
71 // graduate
72  c0g = - c0 / ( 2.0 * wl );
73  c3g = - c3 / ( 4.0 * wl ) * gamm;
74  csg = - cs / ( 2.0 * wl );
75  pag = gamm - 1;
76 
77  system = NULL; // will be set through SetSystem method
78 }
79 
80 
81 
83 {
84  ;
85 }
86 
87 
88 
90 {
91 
92  //std::cout << "QMDMeanField SetSystem" << std::endl;
93 
94  system = aSystem;
95 
97 
98  pp2.clear();
99  rr2.clear();
100  rbij.clear();
101  rha.clear();
102  rhe.clear();
103  rhc.clear();
104 
105  rr2.resize( n );
106  pp2.resize( n );
107  rbij.resize( n );
108  rha.resize( n );
109  rhe.resize( n );
110  rhc.resize( n );
111 
112  for ( int i = 0 ; i < n ; i++ )
113  {
114  rr2[i].resize( n );
115  pp2[i].resize( n );
116  rbij[i].resize( n );
117  rha[i].resize( n );
118  rhe[i].resize( n );
119  rhc[i].resize( n );
120  }
121 
122 
123  ffr.clear();
124  ffp.clear();
125  rh3d.clear();
126 
127  ffr.resize( n );
128  ffp.resize( n );
129  rh3d.resize( n );
130 
132 
133 }
134 
136 {
137 
138  //std::cout << "QMDMeanField SetNucleus" << std::endl;
139 
140  SetSystem( aNucleus );
141 
142  G4double totalPotential = GetTotalPotential();
143  aNucleus->SetTotalPotential( totalPotential );
144 
146 
147 }
148 
149 
150 
152 {
153 
154  if ( system->GetTotalNumberOfParticipant() < 2 ) return;
155 
156  for ( G4int j = 1 ; j < system->GetTotalNumberOfParticipant() ; j++ )
157  {
158 
159  G4ThreeVector rj = system->GetParticipant( j )->GetPosition();
160  G4LorentzVector p4j = system->GetParticipant( j )->Get4Momentum();
161 
162  for ( G4int i = 0 ; i < j ; i++ )
163  {
164 
165  G4ThreeVector ri = system->GetParticipant( i )->GetPosition();
166  G4LorentzVector p4i = system->GetParticipant( i )->Get4Momentum();
167 
168  G4ThreeVector rij = ri - rj;
169  G4ThreeVector pij = (p4i - p4j).v();
170  G4LorentzVector p4ij = p4i - p4j;
171  G4ThreeVector bij = ( p4i + p4j ).boostVector();
172  G4double gammaij = ( p4i + p4j ).gamma();
173 
174  G4double eij = ( p4i + p4j ).e();
175 
176  G4double rbrb = rij*bij;
177 // G4double bij2 = bij*bij;
178  G4double rij2 = rij*rij;
179  G4double pij2 = pij*pij;
180 
181  rbrb = irelcr * rbrb;
182  G4double gamma2_ij = gammaij*gammaij;
183 
184 
185  rr2[i][j] = rij2 + gamma2_ij * rbrb*rbrb;
186  rr2[j][i] = rr2[i][j];
187 
188  rbij[i][j] = gamma2_ij * rbrb;
189  rbij[j][i] = - rbij[i][j];
190 
191  pp2[i][j] = pij2
192  + irelcr * ( - G4Pow::GetInstance()->powN ( p4i.e() - p4j.e() , 2 )
193  + gamma2_ij * G4Pow::GetInstance()->powN ( ( ( p4i.m2() - p4j.m2() ) / eij ) , 2 ) );
194 
195 
196  pp2[j][i] = pp2[i][j];
197 
198 // Gauss term
199 
200  G4double expa1 = - rr2[i][j] * c0w;
201 
202  G4double rh1;
203  if ( expa1 > epsx )
204  {
205  rh1 = G4Exp( expa1 );
206  }
207  else
208  {
209  rh1 = 0.0;
210  }
211 
212  G4int ibry = system->GetParticipant(i)->GetBaryonNumber();
213  G4int jbry = system->GetParticipant(j)->GetBaryonNumber();
214 
215 
216  rha[i][j] = ibry*jbry*rh1;
217  rha[j][i] = rha[i][j];
218 
219 // Coulomb terms
220 
221  G4double rrs2 = rr2[i][j] + epscl;
222  G4double rrs = std::sqrt ( rrs2 );
223 
224  G4int icharge = system->GetParticipant(i)->GetChargeInUnitOfEplus();
225  G4int jcharge = system->GetParticipant(j)->GetChargeInUnitOfEplus();
226 
227  G4double xerf = 0.0;
228  // T. K. add this protection. 5.8 is good enough for double
229  if ( rrs*c0sw < 5.8 ) {
230  //erf = G4RandStat::erf ( rrs*c0sw );
231  //Restore to CLHEP for avoiding compilation error in MT
232  //erf = CLHEP::HepStat::erf ( rrs*c0sw );
233  //Use cmath
234 #if defined WIN32-VC
235  xerf = CLHEP::HepStat::erf ( rrs*c0sw );
236 #else
237  xerf = erf ( rrs*c0sw );
238 #endif
239  } else {
240  xerf = 1.0;
241  }
242 
243  G4double erfij = xerf/rrs;
244 
245 
246  rhe[i][j] = icharge*jcharge * erfij;
247 
248  rhe[j][i] = rhe[i][j];
249 
250  rhc[i][j] = icharge*jcharge * ( - erfij + clw * rh1 ) / rrs2;
251 
252  rhc[j][i] = rhc[i][j];
253 
254  } // i
255  } // j
256 }
257 
258 
259 
261 {
262 
263  //std::cout << "Cal2BodyQuantities " << i << std::endl;
264 
265  G4ThreeVector ri = system->GetParticipant( i )->GetPosition();
266  G4LorentzVector p4i = system->GetParticipant( i )->Get4Momentum();
267 
268 
269  for ( G4int j = 0 ; j < system->GetTotalNumberOfParticipant() ; j ++ )
270  {
271  if ( j == i ) continue;
272 
273  G4ThreeVector rj = system->GetParticipant( j )->GetPosition();
274  G4LorentzVector p4j = system->GetParticipant( j )->Get4Momentum();
275 
276  G4ThreeVector rij = ri - rj;
277  G4ThreeVector pij = (p4i - p4j).v();
278  G4LorentzVector p4ij = p4i - p4j;
279  G4ThreeVector bij = ( p4i + p4j ).boostVector();
280  G4double gammaij = ( p4i + p4j ).gamma();
281 
282  G4double eij = ( p4i + p4j ).e();
283 
284  G4double rbrb = rij*bij;
285 // G4double bij2 = bij*bij;
286  G4double rij2 = rij*rij;
287  G4double pij2 = pij*pij;
288 
289  rbrb = irelcr * rbrb;
290  G4double gamma2_ij = gammaij*gammaij;
291 
292 /*
293  G4double rbrb = 0.0;
294  G4double beta2_ij = 0.0;
295  G4double rij2 = 0.0;
296  G4double pij2 = 0.0;
297 
298 //
299  G4LorentzVector p4ip4j = p4i + p4j;
300  G4double eij = p4ip4j.e();
301 
302  G4ThreeVector r = ri - rj;
303  G4LorentzVector p4 = p4i - p4j;
304 
305  rbrb = r.x()*p4ip4j.x()/eij
306  + r.y()*p4ip4j.y()/eij
307  + r.z()*p4ip4j.z()/eij;
308 
309  beta2_ij = ( p4ip4j.x()*p4ip4j.x() + p4ip4j.y()*p4ip4j.y() + p4ip4j.z()*p4ip4j.z() ) / ( eij*eij );
310  rij2 = r*r;
311  pij2 = p4.v()*p4.v();
312 
313  rbrb = irelcr * rbrb;
314 
315  G4double gamma2_ij = 1 / ( 1 - beta2_ij );
316 */
317 
318  rr2[i][j] = rij2 + gamma2_ij * rbrb*rbrb;
319  rr2[j][i] = rr2[i][j];
320 
321  rbij[i][j] = gamma2_ij * rbrb;
322  rbij[j][i] = - rbij[i][j];
323 
324  pp2[i][j] = pij2
325  + irelcr * ( - G4Pow::GetInstance()->powN ( p4i.e() - p4j.e() , 2 )
326  + gamma2_ij * G4Pow::GetInstance()->powN ( ( ( p4i.m2() - p4j.m2() ) / eij ) , 2 ) );
327 
328  pp2[j][i] = pp2[i][j];
329 
330 // Gauss term
331 
332  G4double expa1 = - rr2[i][j] * c0w;
333 
334  G4double rh1;
335  if ( expa1 > epsx )
336  {
337  rh1 = G4Exp( expa1 );
338  }
339  else
340  {
341  rh1 = 0.0;
342  }
343 
344  G4int ibry = system->GetParticipant(i)->GetBaryonNumber();
345  G4int jbry = system->GetParticipant(j)->GetBaryonNumber();
346 
347 
348  rha[i][j] = ibry*jbry*rh1;
349  rha[j][i] = rha[i][j];
350 
351 // Coulomb terms
352 
353  G4double rrs2 = rr2[i][j] + epscl;
354  G4double rrs = std::sqrt ( rrs2 );
355 
356  G4int icharge = system->GetParticipant(i)->GetChargeInUnitOfEplus();
357  G4int jcharge = system->GetParticipant(j)->GetChargeInUnitOfEplus();
358 
359  G4double xerf = 0.0;
360  // T. K. add this protection. 5.8 is good enough for double
361  if ( rrs*c0sw < 5.8 ) {
362  //xerf = G4RandStat::erf ( rrs*c0sw );
363  //Use cmath
364 #if defined WIN32-VC
365  xerf = CLHEP::HepStat::erf ( rrs*c0sw );
366 #else
367  xerf = erf ( rrs*c0sw );
368 #endif
369  } else {
370  xerf = 1.0;
371  }
372 
373  G4double erfij = xerf/rrs;
374 
375 
376  rhe[i][j] = icharge*jcharge * erfij;
377 
378  rhe[j][i] = rhe[i][j];
379 
380 // G4double clw;
381 
382  rhc[i][j] = icharge*jcharge * ( - erfij + clw * rh1 ) / rrs2;
383 
384  rhc[j][i] = rhc[i][j];
385 
386  }
387 
388 }
389 
390 
391 
393 {
394 
395  ffr.resize( system->GetTotalNumberOfParticipant() );
396  ffp.resize( system->GetTotalNumberOfParticipant() );
397  rh3d.resize( system->GetTotalNumberOfParticipant() );
398 
399  for ( G4int i = 0 ; i < system->GetTotalNumberOfParticipant() ; i ++ )
400  {
401  G4double rho3 = 0.0;
402  for ( G4int j = 0 ; j < system->GetTotalNumberOfParticipant() ; j ++ )
403  {
404  rho3 += rha[j][i];
405  }
406  rh3d[i] = G4Pow::GetInstance()->powA ( rho3 , pag );
407  }
408 
409 
410  for ( G4int i = 0 ; i < system->GetTotalNumberOfParticipant() ; i ++ )
411  {
412 
413  G4ThreeVector ri = system->GetParticipant( i )->GetPosition();
414  G4LorentzVector p4i = system->GetParticipant( i )->Get4Momentum();
415 
416  G4ThreeVector betai = p4i.v()/p4i.e();
417 
418 // R-JQMD
419  G4double Vi = GetPotential( i );
420  G4double p_zero = std::sqrt( p4i.e()*p4i.e() + 2*p4i.m()*Vi);
421  G4ThreeVector betai_R = p4i.v()/p_zero;
422  G4double mi_R = p4i.m()/p_zero;
423 //
424  ffr[i] = betai_R;
425  ffp[i] = G4ThreeVector( 0.0 );
426 
427  if ( false )
428  {
429  ffr[i] = betai;
430  mi_R = 1.0;
431  }
432 
433  for ( G4int j = 0 ; j < system->GetTotalNumberOfParticipant() ; j ++ )
434  {
435 
436  G4ThreeVector rj = system->GetParticipant( j )->GetPosition();
437  G4LorentzVector p4j = system->GetParticipant( j )->Get4Momentum();
438 
439  G4double eij = p4i.e() + p4j.e();
440 
441  G4int icharge = system->GetParticipant(i)->GetChargeInUnitOfEplus();
442  G4int jcharge = system->GetParticipant(j)->GetChargeInUnitOfEplus();
443 
444  G4int inuc = system->GetParticipant(i)->GetNuc();
445  G4int jnuc = system->GetParticipant(j)->GetNuc();
446 
447  G4double ccpp = c0g * rha[j][i]
448  + c3g * rha[j][i] * ( rh3d[j] + rh3d[i] )
449  + csg * rha[j][i] * jnuc * inuc
450  * ( 1. - 2. * std::abs( jcharge - icharge ) )
451  + cl * rhc[j][i];
452  ccpp *= mi_R;
453 
454 /*
455  G4cout << c0g << " " << c3g << " " << csg << " " << cl << G4endl;
456  G4cout << "ccpp " << i << " " << j << " " << ccpp << G4endl;
457  G4cout << "rha[j][i] " << rha[j][i] << G4endl;
458  G4cout << "rh3d " << rh3d[j] << " " << rh3d[i] << G4endl;
459  G4cout << "rhc[j][i] " << rhc[j][i] << G4endl;
460 */
461 
462  G4double grbb = - rbij[j][i];
463  G4double ccrr = grbb * ccpp / eij;
464 
465 /*
466  G4cout << "ccrr " << ccrr << G4endl;
467  G4cout << "grbb " << grbb << G4endl;
468 */
469 
470 
471  G4ThreeVector rij = ri - rj;
472  G4ThreeVector betaij = ( p4i + p4j ).v()/eij;
473 
474  G4ThreeVector cij = betaij - betai;
475 
476  ffr[i] = ffr[i] + 2*ccrr* ( rij + grbb*cij );
477 
478  ffp[i] = ffp[i] - 2*ccpp* ( rij + grbb*betaij );
479 
480  }
481  }
482 
483  //std::cout << "gradu 0 " << ffr[0] << " " << ffp[0] << std::endl;
484  //std::cout << "gradu 1 " << ffr[1] << " " << ffp[1] << std::endl;
485 
486 }
487 
488 
489 
491 {
492  G4int n = system->GetTotalNumberOfParticipant();
493 
494  G4double rhoa = 0.0;
495  G4double rho3 = 0.0;
496  G4double rhos = 0.0;
497  G4double rhoc = 0.0;
498 
499 
500  G4int icharge = system->GetParticipant(i)->GetChargeInUnitOfEplus();
501  G4int inuc = system->GetParticipant(i)->GetNuc();
502 
503  for ( G4int j = 0 ; j < n ; j ++ )
504  {
505  G4int jcharge = system->GetParticipant(j)->GetChargeInUnitOfEplus();
506  G4int jnuc = system->GetParticipant(j)->GetNuc();
507 
508  rhoa += rha[j][i];
509  rhoc += rhe[j][i];
510  rhos += rha[j][i] * jnuc * inuc
511  * ( 1 - 2 * std::abs ( jcharge - icharge ) );
512  }
513 
514  rho3 = G4Pow::GetInstance()->powA ( rhoa , gamm );
515 
516  G4double potential = c0 * rhoa
517  + c3 * rho3
518  + cs * rhos
519  + cl * rhoc;
520 
521  return potential;
522 }
523 
524 
525 
527 {
528 
529  G4int n = system->GetTotalNumberOfParticipant();
530 
531  std::vector < G4double > rhoa ( n , 0.0 );
532  std::vector < G4double > rho3 ( n , 0.0 );
533  std::vector < G4double > rhos ( n , 0.0 );
534  std::vector < G4double > rhoc ( n , 0.0 );
535 
536 
537  for ( G4int i = 0 ; i < n ; i ++ )
538  {
539  G4int icharge = system->GetParticipant(i)->GetChargeInUnitOfEplus();
540  G4int inuc = system->GetParticipant(i)->GetNuc();
541 
542  for ( G4int j = 0 ; j < n ; j ++ )
543  {
544  G4int jcharge = system->GetParticipant(j)->GetChargeInUnitOfEplus();
545  G4int jnuc = system->GetParticipant(j)->GetNuc();
546 
547  rhoa[i] += rha[j][i];
548  rhoc[i] += rhe[j][i];
549  rhos[i] += rha[j][i] * jnuc * inuc
550  * ( 1 - 2 * std::abs ( jcharge - icharge ) );
551  }
552 
553  rho3[i] = G4Pow::GetInstance()->powA ( rhoa[i] , gamm );
554  }
555 
556  G4double potential = c0 * std::accumulate( rhoa.begin() , rhoa.end() , 0.0 )
557  + c3 * std::accumulate( rho3.begin() , rho3.end() , 0.0 )
558  + cs * std::accumulate( rhos.begin() , rhos.end() , 0.0 )
559  + cl * std::accumulate( rhoc.begin() , rhoc.end() , 0.0 );
560 
561  return potential;
562 
563 }
564 
565 
566 
567 G4double G4QMDMeanField::calPauliBlockingFactor( G4int i )
568 {
569 
570  G4double pf = 0.0;
571 // i is supposed beyond total number of Participant()
572  G4int icharge = system->GetParticipant(i)->GetChargeInUnitOfEplus();
573 
574  for ( G4int j = 0 ; j < system->GetTotalNumberOfParticipant() ; j++ )
575  {
576 
577  G4int jcharge = system->GetParticipant(j)->GetChargeInUnitOfEplus();
578  G4int jnuc = system->GetParticipant(j)->GetNuc();
579 
580  if ( jcharge == icharge && jnuc == 1 )
581  {
582 
583 /*
584  G4cout << "Pauli i j " << i << " " << j << G4endl;
585  G4cout << "Pauli icharge " << icharge << G4endl;
586  G4cout << "Pauli jcharge " << jcharge << G4endl;
587 */
588  G4double expa = -rr2[i][j]*cpw;
589 
590 
591  if ( expa > epsx )
592  {
593  expa = expa - pp2[i][j]*cph;
594 /*
595  G4cout << "Pauli cph " << cph << G4endl;
596  G4cout << "Pauli pp2 " << pp2[i][j] << G4endl;
597  G4cout << "Pauli expa " << expa << G4endl;
598  G4cout << "Pauli epsx " << epsx << G4endl;
599 */
600  if ( expa > epsx )
601  {
602 // std::cout << "Pauli phase " << pf << std::endl;
603  pf = pf + G4Exp ( expa );
604  }
605  }
606  }
607 
608  }
609 
610 
611  pf = ( pf - 1.0 ) * cpc;
612 
613  //std::cout << "Pauli pf " << pf << std::endl;
614 
615  return pf;
616 
617 }
618 
619 
620 
622 {
623  G4bool result = false;
624 
625  if ( system->GetParticipant( i )->GetNuc() == 1 )
626  {
627  G4double pf = calPauliBlockingFactor( i );
628  G4double rand = G4UniformRand();
629  if ( pf > rand ) result = true;
630  }
631 
632  return result;
633 }
634 
635 
636 
638 {
639 
640  G4double cc2 = 1.0;
641  G4double cc1 = 1.0 - cc2;
642  G4double cc3 = 1.0 / 2.0 / cc2;
643 
644  G4double dt3 = dt * cc3;
645  G4double dt1 = dt * ( cc1 - cc3 );
646  G4double dt2 = dt * cc2;
647 
648  CalGraduate();
649 
650  G4int n = system->GetTotalNumberOfParticipant();
651 
652 // 1st Step
653 
654  std::vector< G4ThreeVector > f0r, f0p;
655  f0r.resize( n );
656  f0p.resize( n );
657 
658  for ( G4int i = 0 ; i < n ; i++ )
659  {
660  G4ThreeVector ri = system->GetParticipant( i )->GetPosition();
661  G4ThreeVector p3i = system->GetParticipant( i )->GetMomentum();
662 
663  ri += dt3* ffr[i];
664  p3i += dt3* ffp[i];
665 
666  f0r[i] = ffr[i];
667  f0p[i] = ffp[i];
668 
669  system->GetParticipant( i )->SetPosition( ri );
670  system->GetParticipant( i )->SetMomentum( p3i );
671 
672 // we do not need set total momentum by ourselvs
673  }
674 
675 // 2nd Step
677  CalGraduate();
678 
679  for ( G4int i = 0 ; i < n ; i++ )
680  {
681  G4ThreeVector ri = system->GetParticipant( i )->GetPosition();
682  G4ThreeVector p3i = system->GetParticipant( i )->GetMomentum();
683 
684  ri += dt1* f0r[i] + dt2* ffr[i];
685  p3i += dt1* f0p[i] + dt2* ffp[i];
686 
687  system->GetParticipant( i )->SetPosition( ri );
688  system->GetParticipant( i )->SetMomentum( p3i );
689 
690 // we do not need set total momentum by ourselvs
691  }
692 
694 
695 }
696 
697 
698 
699 std::vector< G4QMDNucleus* > G4QMDMeanField::DoClusterJudgment()
700 {
701 
702  //std::cout << "MeanField DoClusterJudgemnt" << std::endl;
703 
705 
706  G4double cpf2 = G4Pow::GetInstance()->A23 ( 1.5 * pi*pi * G4Pow::GetInstance()->powA ( 4.0 * pi * wl , -1.5 ) ) * hbc * hbc;
707  G4double rcc2 = rclds*rclds;
708 
709  G4int n = system->GetTotalNumberOfParticipant();
710  std::vector < G4double > rhoa;
711  rhoa.resize ( n );
712 
713  for ( G4int i = 0 ; i < n ; i++ )
714  {
715  rhoa[i] = 0.0;
716 
717  if ( system->GetParticipant( i )->GetBaryonNumber() == 1 )
718  {
719  for ( G4int j = 0 ; j < n ; j++ )
720  {
721  if ( system->GetParticipant( j )->GetBaryonNumber() == 1 )
722  rhoa[i] += rha[i][j];
723  }
724  }
725 
726  rhoa[i] = G4Pow::GetInstance()->A13 ( rhoa[i] + 1 );
727 
728  }
729 
730 // identification of the cluster
731 
732  std::map < G4int , std::vector < G4int > > cluster_map;
733  std::vector < G4bool > is_already_belong_some_cluster;
734 
735  // cluster_id participant_id
736  std::multimap < G4int , G4int > comb_map;
737  std::multimap < G4int , G4int > assign_map;
738  assign_map.clear();
739 
740  std::vector < G4int > mascl;
741  std::vector < G4int > num;
742  mascl.resize ( n );
743  num.resize ( n );
744  is_already_belong_some_cluster.resize ( n );
745 
746  std::vector < G4int > is_assigned_to ( n , -1 );
747  std::multimap < G4int , G4int > clusters;
748 
749  for ( G4int i = 0 ; i < n ; i++ )
750  {
751  mascl[i] = 1;
752  num[i] = 1;
753 
754  is_already_belong_some_cluster[i] = false;
755  }
756 
757 
758  G4int nclst = 1;
759  G4int ichek = 1;
760 
761 
762  G4int id = 0;
763  G4int cluster_id = -1;
764  for ( G4int i = 0 ; i < n-1 ; i++ )
765  {
766 
767  G4bool hasThisCompany = false;
768 // Check only for bryons?
769 // std::cout << "Check Baryon " << i << std::endl;
770 
771  if ( system->GetParticipant( i )->GetBaryonNumber() == 1 )
772  {
773 
774 // if ( is_already_belong_some_cluster[i] != true )
775 // {
776  //G4int j1 = ichek + 1;
777  G4int j1 = i + 1;
778  for ( G4int j = j1 ; j < n ; j++ )
779  {
780 
781  std::vector < G4int > cluster_participants;
782  if ( system->GetParticipant( j )->GetBaryonNumber() == 1 )
783  {
784  G4double rdist2 = rr2[ i ][ j ];
785  G4double pdist2 = pp2[ i ][ j ];
786  //G4double rdist2 = rr2[ num[i] ][ num[j] ];
787  //G4double pdist2 = pp2[ num[i] ][ num[j] ];
788  G4double pcc2 = cpf2
789  * ( rhoa[ i ] + rhoa[ j ] )
790  * ( rhoa[ i ] + rhoa[ j ] );
791 
792 // Check phase space: close enough?
793  if ( rdist2 < rcc2 && pdist2 < pcc2 )
794  {
795 
796 /*
797  G4cout << "G4QMDRESULT "
798  << i << " " << j << " " << id << " "
799  << is_assigned_to [ i ] << " " << is_assigned_to [ j ]
800  << G4endl;
801 */
802 
803  if ( is_assigned_to [ j ] == -1 )
804  {
805  if ( is_assigned_to [ i ] == -1 )
806  {
807  if ( clusters.size() != 0 )
808  {
809  id = clusters.rbegin()->first + 1;
810  //std::cout << "id is increare " << id << std::endl;
811  }
812  else
813  {
814  id = 0;
815  }
816  clusters.insert ( std::multimap<G4int,G4int>::value_type ( id , i ) );
817  is_assigned_to [ i ] = id;
818  clusters.insert ( std::multimap<G4int,G4int>::value_type ( id , j ) );
819  is_assigned_to [ j ] = id;
820  }
821  else
822  {
823  clusters.insert ( std::multimap<G4int,G4int>::value_type ( is_assigned_to [ i ] , j ) );
824  is_assigned_to [ j ] = is_assigned_to [ i ];
825  }
826  }
827  else
828  {
829 // j is already belong to some cluester
830  if ( is_assigned_to [ i ] == -1 )
831  {
832  clusters.insert ( std::multimap<G4int,G4int>::value_type ( is_assigned_to [ j ] , i ) );
833  is_assigned_to [ i ] = is_assigned_to [ j ];
834  }
835  else
836  {
837 // i has companion
838  if ( is_assigned_to [ i ] != is_assigned_to [ j ] )
839  {
840 // move companions to the cluster
841 //
842  //std::cout << "combine " << is_assigned_to [ i ] << " to " << is_assigned_to [ j ] << std::endl;
843  std::multimap< G4int , G4int > clusters_tmp;
844  G4int target_cluster_id;
845  if ( is_assigned_to [ i ] > is_assigned_to [ j ] )
846  target_cluster_id = is_assigned_to [ i ];
847  else
848  target_cluster_id = is_assigned_to [ j ];
849 
850  for ( std::multimap< G4int , G4int >::iterator it
851  = clusters.begin() ; it != clusters.end() ; it++ )
852  {
853 
854  //std::cout << it->first << " " << it->second << " " << target_cluster_id << std::endl;
855  if ( it->first == target_cluster_id )
856  {
857  //std::cout << "move " << it->first << " " << it->second << std::endl;
858  is_assigned_to [ it->second ] = is_assigned_to [ j ];
859  clusters_tmp.insert ( std::multimap<G4int,G4int>::value_type ( is_assigned_to [ j ] , it->second ) );
860  }
861  else
862  {
863  clusters_tmp.insert ( std::multimap<G4int,G4int>::value_type ( it->first , it->second ) );
864  }
865  }
866 
867  clusters = clusters_tmp;
868  //id = clusters.rbegin()->first;
869  //id = target_cluster_id;
870  //std::cout << "id " << id << std::endl;
871  }
872  }
873  }
874 
875  //std::cout << "combination " << i << " " << j << std::endl;
876  comb_map.insert( std::multimap<G4int,G4int>::value_type ( i , j ) );
877  cluster_participants.push_back ( j );
878 
879 
880 
881  if ( assign_map.find( cluster_id ) == assign_map.end() )
882  {
883  is_already_belong_some_cluster[i] = true;
884  assign_map.insert ( std::multimap<G4int,G4int>::value_type ( cluster_id , i ) );
885  hasThisCompany = true;
886  }
887  assign_map.insert ( std::multimap<G4int,G4int>::value_type ( cluster_id , j ) );
888  is_already_belong_some_cluster[j] = true;
889 
890  }
891 
892  if ( ichek == i )
893  {
894  nclst++;
895  ichek++;
896  }
897  }
898 
899  if ( cluster_participants.size() > 0 )
900  {
901 // cluster , participant
902  cluster_map.insert ( std::pair < G4int , std::vector < G4int > > ( i , cluster_participants ) );
903  }
904  }
905 // }
906  }
907  if ( hasThisCompany == true ) cluster_id++;
908  }
909 
910  //std::cout << " id " << id << std::endl;
911 
912 // sort
913 // Heavy cluster comes first
914 // size cluster_id
915  std::multimap< G4int , G4int > sorted_cluster_map;
916  for ( G4int i = 0 ; i <= id ; i++ ) // << "<=" because id is highest cluster nubmer.
917  {
918 
919  //std::cout << i << " cluster has " << clusters.count( i ) << " nucleons." << std::endl;
920  sorted_cluster_map.insert ( std::multimap<G4int,G4int>::value_type ( (G4int) clusters.count( i ) , i ) );
921 
922  }
923 
924 
925 // create nucleus from devided clusters
926  std::vector < G4QMDNucleus* > result;
927  for ( std::multimap < G4int , G4int >::reverse_iterator it
928  = sorted_cluster_map.rbegin() ; it != sorted_cluster_map.rend() ; it ++)
929  {
930 
931  //G4cout << "Add Participants to cluseter " << it->second << G4endl;
932 
933  if ( it->first != 0 )
934  {
935  G4QMDNucleus* nucleus = new G4QMDNucleus();
936  for ( std::multimap < G4int , G4int >::iterator itt
937  = clusters.begin() ; itt != clusters.end() ; itt ++)
938  {
939 
940  if ( it->second == itt->first )
941  {
942  nucleus->SetParticipant( system->GetParticipant ( itt->second ) );
943  //G4cout << "Add Participants " << itt->second << " " << system->GetParticipant ( itt->second )->GetPosition() << G4endl;
944  }
945 
946  }
947  result.push_back( nucleus );
948  }
949 
950  }
951 
952 // delete participants from current system
953 
954  for ( std::vector < G4QMDNucleus* > ::iterator it
955  = result.begin() ; it != result.end() ; it++ )
956  {
957  system->SubtractSystem ( *it );
958  }
959 
960  return result;
961 
962 }
963 
964 
965 
967 {
968  SetSystem( system );
969 }
G4double G4ParticleHPJENDLHEData::G4double result
static G4Pow * GetInstance()
Definition: G4Pow.cc:55
G4double powA(G4double A, G4double y) const
Definition: G4Pow.hh:259
G4ThreeVector GetPosition()
G4double powN(G4double x, G4int n) const
Definition: G4Pow.cc:128
G4double Get_rho0()
void SetParticipant(G4QMDParticipant *particle)
Definition: G4QMDSystem.hh:51
CLHEP::Hep3Vector G4ThreeVector
void SetPosition(G4ThreeVector r)
G4double Get_hbc()
void SubtractSystem(G4QMDSystem *)
Definition: G4QMDSystem.cc:59
G4int GetChargeInUnitOfEplus()
Hep3Vector v() const
void SetNucleus(G4QMDNucleus *aSystem)
int G4int
Definition: G4Types.hh:78
void Cal2BodyQuantities()
G4bool IsPauliBlocked(G4int)
G4ThreeVector GetMomentum()
G4double Get_cpc()
G4double A23(G4double A) const
Definition: G4Pow.hh:160
#define G4UniformRand()
Definition: Randomize.hh:97
static G4QMDParameters * GetInstance()
bool G4bool
Definition: G4Types.hh:79
G4double GetPotential(G4int)
G4int GetTotalNumberOfParticipant()
Definition: G4QMDSystem.hh:60
void SetMomentum(G4ThreeVector p)
G4double Get_gamm()
G4double GetTotalPotential()
std::vector< G4QMDNucleus * > DoClusterJudgment()
G4QMDParticipant * GetParticipant(G4int i)
Definition: G4QMDSystem.hh:62
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
G4double A13(G4double A) const
Definition: G4Pow.hh:132
G4LorentzVector Get4Momentum()
double m2() const
void DoPropagation(G4double)
void SetSystem(G4QMDSystem *aSystem)
void SetTotalPotential(G4double x)
Definition: G4QMDNucleus.hh:62
static double erf(double x)
G4double Get_cpw()
static constexpr double pi
Definition: G4SIunits.hh:75
G4double Get_cph()
double G4double
Definition: G4Types.hh:76
void CalEnergyAndAngularMomentumInCM()