Geant4  10.03.p01
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4ChipsProtonInelasticXS.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // The lust update: M.V. Kossov, CERN/ITEP(Moscow) 17-June-02
28 //
29 //
30 // G4 Physics class: G4ChipsProtonInelasticXS for gamma+A cross sections
31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 20-Dec-03
32 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 15-Feb-04
33 //
34 //
35 // ****************************************************************************************
36 // Short description: Cross-sections extracted (by W.Pokorski) from the CHIPS package for
37 // proton-nuclear interactions. Original author: M. Kossov
38 // -------------------------------------------------------------------------------------
39 //
40 
41 
43 #include "G4SystemOfUnits.hh"
44 #include "G4DynamicParticle.hh"
45 #include "G4ParticleDefinition.hh"
46 #include "G4Proton.hh"
47 #include "G4Log.hh"
48 #include "G4Exp.hh"
49 #include "G4Pow.hh"
50 
51 
52 // factory
53 #include "G4CrossSectionFactory.hh"
54 //
56 
58 {
59  // Initialization of the
60  lastLEN=0; // Pointer to the lastArray of LowEn CS
61  lastHEN=0; // Pointer to the lastArray of HighEn CS
62  lastN=0; // The last N of calculated nucleus
63  lastZ=0; // The last Z of calculated nucleus
64  lastP=0.; // Last used in cross section Momentum
65  lastTH=0.; // Last threshold momentum
66  lastCS=0.; // Last value of the Cross Section
67  lastI=0; // The last position in the DAMDB
68 
69  LEN = new std::vector<G4double*>;
70  HEN = new std::vector<G4double*>;
71 }
72 
74 {
75  G4int lens=LEN->size();
76  for(G4int i=0; i<lens; ++i) delete[] (*LEN)[i];
77  delete LEN;
78  G4int hens=HEN->size();
79  for(G4int i=0; i<hens; ++i) delete[] (*HEN)[i];
80  delete HEN;
81 }
82 
83 void
85 {
86  outFile << "G4ChipsProtonInelasticXS provides the inelastic cross\n"
87  << "section for proton nucleus scattering as a function of incident\n"
88  << "momentum. The cross section is calculated using M. Kossov's\n"
89  << "CHIPS parameterization of cross section data.\n";
90 }
91 
93  const G4Element*,
94  const G4Material*)
95 {
96  return true;
97 }
98 
99 
100 // The main member function giving the collision cross section (P is in IU, CS is in mb)
101 // Make pMom in independent units ! (Now it is MeV)
103  const G4Isotope*,
104  const G4Element*,
105  const G4Material*)
106 {
107  G4double pMom=Pt->GetTotalMomentum();
108  G4int tgN = A - tgZ;
109 
110  return GetChipsCrossSection(pMom, tgZ, tgN, 2212);
111 }
112 
114 {
115 
116  G4bool in=false; // By default the isotope must be found in the AMDB
117  if(tgN!=lastN || tgZ!=lastZ) // The nucleus was not the last used isotope
118  {
119  in = false; // By default the isotope haven't been found in AMDB
120  lastP = 0.; // New momentum history (nothing to compare with)
121  lastN = tgN; // The last N of the calculated nucleus
122  lastZ = tgZ; // The last Z of the calculated nucleus
123  lastI = colN.size(); // Size of the Associative Memory DB in the heap
124  j = 0; // A#0f records found in DB for this projectile
125  if(lastI) for(G4int i=0; i<lastI; i++) // AMDB exists, try to find the (Z,N) isotope
126  {
127  if(colN[i]==tgN && colZ[i]==tgZ) // Try the record "i" in the AMDB
128  {
129  lastI=i; // Remember the index for future fast/last use
130  lastTH =colTH[i]; // The last THreshold (A-dependent)
131  if(pMom<=lastTH)
132  {
133  return 0.; // Energy is below the Threshold value
134  }
135  lastP =colP [i]; // Last Momentum (A-dependent)
136  lastCS =colCS[i]; // Last CrossSect (A-dependent)
137  in = true; // This is the case when the isotop is found in DB
138  // Momentum pMom is in IU ! @@ Units
139  lastCS=CalculateCrossSection(-1,j,2212,lastZ,lastN,pMom); // read & update
140  if(lastCS<=0. && pMom>lastTH) // Correct the threshold (@@ No intermediate Zeros)
141  {
142  lastCS=0.;
143  lastTH=pMom;
144  }
145  break; // Go out of the LOOP
146  }
147  j++; // Increment a#0f records found in DB
148  }
149  if(!in) // This isotope has not been calculated previously
150  {
152  lastCS=CalculateCrossSection(0,j,2212,lastZ,lastN,pMom); //calculate & create
153  //if(lastCS>0.) // It means that the AMBD was initialized
154  //{
155 
156  lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
157  colN.push_back(tgN);
158  colZ.push_back(tgZ);
159  colP.push_back(pMom);
160  colTH.push_back(lastTH);
161  colCS.push_back(lastCS);
162  //} // M.K. Presence of H1 with high threshold breaks the syncronization
163  return lastCS*millibarn;
164  } // End of creation of the new set of parameters
165  else
166  {
167  colP[lastI]=pMom;
168  colCS[lastI]=lastCS;
169  }
170  } // End of parameters udate
171  else if(pMom<=lastTH)
172  {
173  return 0.; // Momentum is below the Threshold Value -> CS=0
174  }
175  else // It is the last used -> use the current tables
176  {
177  lastCS=CalculateCrossSection(1,j,2212,lastZ,lastN,pMom); // Only read and UpdateDB
178  lastP=pMom;
179  }
180  return lastCS*millibarn;
181 }
182 
183 // The main member function giving the gamma-A cross section (E in GeV, CS in mb)
184 G4double G4ChipsProtonInelasticXS::CalculateCrossSection(G4int F, G4int I,
185  G4int, G4int targZ, G4int targN, G4double Momentum)
186 {
187  static const G4double THmin=27.; // default minimum Momentum (MeV/c) Threshold
188  static const G4double THmiG=THmin*.001; // minimum Momentum (GeV/c) Threshold
189  static const G4double dP=10.; // step for the LEN (Low ENergy) table MeV/c
190  static const G4double dPG=dP*.001; // step for the LEN (Low ENergy) table GeV/c
191  static const G4int nL=105; // A#of LEN points in E (step 10 MeV/c)
192  static const G4double Pmin=THmin+(nL-1)*dP; // minP for the HighE part with safety
193  static const G4double Pmax=227000.; // maxP for the HEN (High ENergy) part 227 GeV
194  static const G4int nH=224; // A#of HEN points in lnE
195  static const G4double milP=G4Log(Pmin);// Low logarithm energy for the HEN part
196  static const G4double malP=G4Log(Pmax);// High logarithm energy (each 2.75 percent)
197  static const G4double dlP=(malP-milP)/(nH-1); // Step in log energy in the HEN part
198  static const G4double milPG=G4Log(.001*Pmin);// Low logarithmEnergy for HEN part GeV/c
199  G4double sigma=0.;
200  if(F&&I) sigma=0.; // @@ *!* Fake line *!* to use F & I !!!Temporary!!!
201  //G4double A=targN+targZ; // A of the target
202  if(F<=0) // This isotope was not the last used isotop
203  {
204  if(F<0) // This isotope was found in DAMDB =-----=> RETRIEVE
205  {
206  G4int sync=LEN->size();
207  if(sync<=I) G4cout<<"*!*G4QProtonNuclCS::CalcCrossSect:Sync="<<sync<<"<="<<I<<G4endl;
208  lastLEN=(*LEN)[I]; // Pointer to prepared LowEnergy cross sections
209  lastHEN=(*HEN)[I]; // Pointer to prepared High Energy cross sections
210  }
211  else // This isotope wasn't calculated before => CREATE
212  {
213  lastLEN = new G4double[nL]; // Allocate memory for the new LEN cross sections
214  lastHEN = new G4double[nH]; // Allocate memory for the new HEN cross sections
215  // --- Instead of making a separate function ---
216  G4double P=THmiG; // Table threshold in GeV/c
217  for(G4int k=0; k<nL; k++)
218  {
219  lastLEN[k] = CrossSectionLin(targZ, targN, P);
220  P+=dPG;
221  }
222  G4double lP=milPG;
223  for(G4int n=0; n<nH; n++)
224  {
225  lastHEN[n] = CrossSectionLog(targZ, targN, lP);
226  lP+=dlP;
227  }
228  // --- End of possible separate function
229  // *** The synchronization check ***
230  G4int sync=LEN->size();
231  if(sync!=I)
232  {
233  G4cout<<"***G4ChipsProtonNuclCS::CalcCrossSect: Sinc="<<sync<<"#"<<I<<", Z=" <<targZ
234  <<", N="<<targN<<", F="<<F<<G4endl;
235  //G4Exception("G4ProtonNuclearCS::CalculateCS:","39",FatalException,"overflow DB");
236  }
237  LEN->push_back(lastLEN); // remember the Low Energy Table
238  HEN->push_back(lastHEN); // remember the High Energy Table
239  } // End of creation of the new set of parameters
240  } // End of parameters udate
241  // =------------------= NOW the Magic Formula =-----------------------=
242  if (Momentum<lastTH) return 0.; // It must be already checked in the interface class
243  else if (Momentum<Pmin) // High Energy region
244  {
245  sigma=EquLinearFit(Momentum,nL,THmin,dP,lastLEN);
246  }
247  else if (Momentum<Pmax) // High Energy region
248  {
249  G4double lP=G4Log(Momentum);
250  sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN);
251  }
252  else // UHE region (calculation, not frequent)
253  {
254  G4double P=0.001*Momentum; // Approximation formula is for P in GeV/c
255  sigma=CrossSectionFormula(targZ, targN, P, G4Log(P));
256  }
257  if(sigma<0.) return 0.;
258  return sigma;
259 }
260 
261 // Electromagnetic momentum-threshold (in MeV/c)
262 G4double G4ChipsProtonInelasticXS::ThresholdMomentum(G4int tZ, G4int tN)
263 {
264  static const G4double third=1./3.;
265  static const G4double pM = G4Proton::Proton()->Definition()->GetPDGMass(); // Projectile mass in MeV
266  static const G4double tpM= pM+pM; // Doubled projectile mass (MeV)
267 
268  G4double tA=tZ+tN;
269  if(tZ<.99 || tN<0.) return 0.;
270  else if(tZ==1 && tN==0) return 800.; // A threshold on the free proton
271  //G4double dE=1.263*tZ/(1.+G4Pow::GetInstance()->powA(tA,third));
272  G4double dE=tZ/(1.+G4Pow::GetInstance()->powA(tA,third)); // Safety for diffused edge of the nucleus (QE)
273  G4double tM=931.5*tA;
274  G4double T=dE+dE*(dE/2+pM)/tM;
275  return std::sqrt(T*(tpM+T));
276 }
277 
278 // Calculation formula for proton-nuclear inelastic cross-section (mb) (P in GeV/c)
279 G4double G4ChipsProtonInelasticXS::CrossSectionLin(G4int tZ, G4int tN, G4double P)
280 {
281  G4double sigma=0.;
282  if(P<ThresholdMomentum(tZ,tN)*.001) return sigma;
283  G4double lP=G4Log(P);
284  if(tZ==1&&!tN){if(P>.35) sigma=CrossSectionFormula(tZ,tN,P,lP);}// s(pp)=0 below 350Mev/c
285  else if(tZ<97 && tN<152) // General solution
286  {
287  G4double pex=0.;
288  G4double pos=0.;
289  G4double wid=1.;
290  if(tZ==13 && tN==14) // Excited metastable states
291  {
292  pex=230.;
293  pos=.13;
294  wid=8.e-5;
295  }
296  else if(tZ<7)
297  {
298  if(tZ==6 && tN==6)
299  {
300  pex=320.;
301  pos=.14;
302  wid=7.e-6;
303  }
304  else if(tZ==5 && tN==6)
305  {
306  pex=270.;
307  pos=.17;
308  wid=.002;
309  }
310  else if(tZ==4 && tN==5)
311  {
312  pex=600.;
313  pos=.132;
314  wid=.005;
315  }
316  else if(tZ==3 && tN==4)
317  {
318  pex=280.;
319  pos=.19;
320  wid=.0025;
321  }
322  else if(tZ==3 && tN==3)
323  {
324  pex=370.;
325  pos=.171;
326  wid=.006;
327  }
328  else if(tZ==2 && tN==1)
329  {
330  pex=30.;
331  pos=.22;
332  wid=.0005;
333  }
334  }
335  sigma=CrossSectionFormula(tZ,tN,P,lP);
336  if(pex>0.)
337  {
338  G4double dp=P-pos;
339  sigma+=pex*G4Exp(-dp*dp/wid);
340  }
341  }
342  else
343  {
344  G4cerr<<"-Warning-G4ChipsProtonNuclearXS::CSLin:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl;
345  sigma=0.;
346  }
347  if(sigma<0.) return 0.;
348  return sigma;
349 }
350 
351 // Calculation formula for proton-nuclear inelastic cross-section (mb) log(P in GeV/c)
352 G4double G4ChipsProtonInelasticXS::CrossSectionLog(G4int tZ, G4int tN, G4double lP)
353 {
354  G4double P=G4Exp(lP);
355  return CrossSectionFormula(tZ, tN, P, lP);
356 }
357 // Calculation formula for proton-nuclear inelastic cross-section (mb) log(P in GeV/c)
358 G4double G4ChipsProtonInelasticXS::CrossSectionFormula(G4int tZ, G4int tN,
359  G4double P, G4double lP)
360 {
361  G4double sigma=0.;
362  if(tZ==1 && !tN) // pp interaction (from G4QuasiElasticRatios)
363  {
364  G4double El(0.),To(0.); // Uzhi
365  if(P<0.1) // Copied from G4QuasiElasticRatios Uzhi / start
366  {
367  G4double p2=P*P;
368  El=1./(0.00012+p2*0.2);
369  To=El;
370  }
371  else if(P>1000.)
372  {
373  G4double lp=G4Log(P)-3.5;
374  G4double lp2=lp*lp;
375  El=0.0557*lp2+6.72;
376  To=0.3*lp2+38.2;
377  }
378  else
379  {
380  G4double p2=P*P;
381  G4double LE=1./(0.00012+p2*0.2);
382  G4double lp=G4Log(P)-3.5;
383  G4double lp2=lp*lp;
384  G4double rp2=1./p2;
385  El=LE+(0.0557*lp2+6.72+32.6/P)/(1.+rp2/P);
386  To=LE+(0.3 *lp2+38.2+52.7*rp2)/(1.+2.72*rp2*rp2);
387  } // Copied from G4QuasiElasticRatios Uzhi / end
388 
389 /* // Uzhi 4.03.2013
390  G4double p2=P*P;
391  G4double lp=lP-3.5;
392  G4double lp2=lp*lp;
393  G4double rp2=1./p2;
394  G4double El=(.0557*lp2+6.72+30./P)/(1.+.49*rp2/P);
395  G4double To=(.3*lp2+38.2)/(1.+.54*rp2*rp2);
396 */ // Uzhi 4.03.2013
397 
398  sigma=To-El;
399  }
400  else if(tZ<97 && tN<152) // General solution
401  {
402  //G4double lP=G4Log(P); // Already calculated
403  G4double d=lP-4.2;
404  G4double p2=P*P;
405  G4double p4=p2*p2;
406  G4double a=tN+tZ; // A of the target
407  G4double al=G4Log(a);
408  G4double sa=std::sqrt(a);
409  G4double a2=a*a;
410  G4double a2s=a2*sa;
411  G4double a4=a2*a2;
412  G4double a8=a4*a4;
413  G4double a12=a8*a4;
414  G4double a16=a8*a8;
415  G4double c=(170.+3600./a2s)/(1.+65./a2s);
416  G4double dl=al-3.;
417  G4double dl2=dl*dl;
418  G4double r=.21+.62*dl2/(1.+.5*dl2);
419  G4double gg=40.*G4Exp(al*0.712)/(1.+12.2/a)/(1.+34./a2);
420  G4double e=318.+a4/(1.+.0015*a4/G4Exp(al*0.09))/(1.+4.e-28*a12)+
421  8.e-18/(1./a16+1.3e-20)/(1.+1.e-21*a12);
422  G4double ss=3.57+.009*a2/(1.+.0001*a2*a);
423  G4double h=(.01/a4+2.5e-6/a)*(1.+6.e-6*a2*a)/(1.+6.e7/a12/a2);
424  sigma=(c+d*d)/(1.+r/p4)+(gg+e*G4Exp(-ss*P))/(1.+h/p4/p4);
425  }
426  else
427  {
428  G4cerr<<"-Warning-G4QProtonNuclearCroSect::CSForm:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl;
429  sigma=0.;
430  }
431  if(sigma<0.) return 0.;
432  return sigma;
433 }
434 
435 G4double G4ChipsProtonInelasticXS::EquLinearFit(G4double X, G4int N, G4double X0, G4double DX, G4double* Y)
436 {
437  if(DX<=0. || N<2)
438  {
439  G4cerr<<"***G4ChipsProtonInelasticXS::EquLinearFit: DX="<<DX<<", N="<<N<<G4endl;
440  return Y[0];
441  }
442 
443  G4int N2=N-2;
444  G4double d=(X-X0)/DX;
445  G4int jj=static_cast<int>(d);
446  if (jj<0) jj=0;
447  else if(jj>N2) jj=N2;
448  d-=jj; // excess
449  G4double yi=Y[jj];
450  G4double sigma=yi+(Y[jj+1]-yi)*d;
451 
452  return sigma;
453 }
static G4Pow * GetInstance()
Definition: G4Pow.cc:55
const int N
Definition: mixmax.h:43
Definition: Evaluator.cc:66
G4double powA(G4double A, G4double y) const
Definition: G4Pow.hh:259
double Y(double density)
virtual void CrossSectionDescription(std::ostream &) const
static const G4int nH
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
static const G4int nL
int G4int
Definition: G4Types.hh:78
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
static double P[]
G4double GetTotalMomentum() const
static G4Proton * Definition()
Definition: G4Proton.cc:49
static const G4double dE
G4GLOB_DLL std::ostream G4cout
double A(double temperature)
bool G4bool
Definition: G4Types.hh:79
static G4Proton * Proton()
Definition: G4Proton.cc:93
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
G4double G4Log(G4double x)
Definition: G4Log.hh:230
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
#define G4_DECLARE_XS_FACTORY(cross_section)
G4double GetPDGMass() const
#define G4endl
Definition: G4ios.hh:61
double G4double
Definition: G4Types.hh:76
static const G4double pos
static const G4double THmin
static constexpr double millibarn
Definition: G4SIunits.hh:106
G4GLOB_DLL std::ostream G4cerr