Geant4  10.03.p01
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4ChipsHyperonInelasticXS.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // The lust update: M.V. Kossov, CERN/ITEP(Moscow) 17-June-02
28 //
29 // ****************************************************************************************
30 // Short description: Cross-sections extracted (by W.Pokorski) from the CHIPS package for
31 // Hyperon-nuclear interactions. Original author: M. Kossov
32 // -------------------------------------------------------------------------------------
33 //
34 
36 #include "G4SystemOfUnits.hh"
37 #include "G4DynamicParticle.hh"
38 #include "G4ParticleDefinition.hh"
39 #include "G4Lambda.hh"
40 #include "G4SigmaPlus.hh"
41 #include "G4SigmaMinus.hh"
42 #include "G4SigmaZero.hh"
43 #include "G4XiMinus.hh"
44 #include "G4XiZero.hh"
45 #include "G4OmegaMinus.hh"
46 #include "G4Log.hh"
47 #include "G4Exp.hh"
48 
49 // factory
50 #include "G4CrossSectionFactory.hh"
51 //
53 
55 {
56  // Initialization of the
57  lastLEN=0; // Pointer to the lastArray of LowEn CS
58  lastHEN=0; // Pointer to the lastArray of HighEn CS
59  lastN=0; // The last N of calculated nucleus
60  lastZ=0; // The last Z of calculated nucleus
61  lastP=0.; // Last used in cross section Momentum
62  lastTH=0.; // Last threshold momentum
63  lastCS=0.; // Last value of the Cross Section
64  lastI=0; // The last position in the DAMDB
65  LEN = new std::vector<G4double*>;
66  HEN = new std::vector<G4double*>;
67 }
68 
70 {
71  G4int lens=LEN->size();
72  for(G4int i=0; i<lens; ++i) delete[] (*LEN)[i];
73  delete LEN;
74 
75  G4int hens=HEN->size();
76  for(G4int i=0; i<hens; ++i) delete[] (*HEN)[i];
77  delete HEN;
78 }
79 
80 void G4ChipsHyperonInelasticXS::CrossSectionDescription(std::ostream& outFile) const
81 {
82  outFile << "G4ChipsHyperonInelasticXS provides the inelastic cross\n"
83  << "section for hyperon nucleus scattering as a function of incident\n"
84  << "momentum. The cross section is calculated using M. Kossov's\n"
85  << "CHIPS parameterization of cross section data.\n";
86 }
87 
89  const G4Element*,
90  const G4Material*)
91 {
92  /*
93  const G4ParticleDefinition* particle = Pt->GetDefinition();
94  if (particle == G4Lambda::Lambda())
95  {
96  return true;
97  }
98  else if(particle == G4SigmaPlus::SigmaPlus())
99  {
100  return true;
101  }
102  else if(particle == G4SigmaMinus::SigmaMinus())
103  {
104  return true;
105  }
106  else if(particle == G4SigmaZero::SigmaZero())
107  {
108  return true;
109  }
110  else if(particle == G4XiMinus::XiMinus())
111  {
112  return true;
113  }
114  else if(particle == G4XiZero::XiZero())
115  {
116  return true;
117  }
118  else if(particle == G4OmegaMinus::OmegaMinus())
119  {
120  return true;
121  }
122  */
123  return true;
124 }
125 
126 // The main member function giving the collision cross section (P is in IU, CS is in mb)
127 // Make pMom in independent units ! (Now it is MeV)
129  const G4Isotope*,
130  const G4Element*,
131  const G4Material*)
132 {
133  G4double pMom=Pt->GetTotalMomentum();
134  G4int tgN = A - tgZ;
135  G4int pdg = Pt->GetDefinition()->GetPDGEncoding();
136 
137  return GetChipsCrossSection(pMom, tgZ, tgN, pdg);
138 }
139 
141 {
142 
143  G4bool in=false; // By default the isotope must be found in the AMDB
144  if(tgN!=lastN || tgZ!=lastZ) // The nucleus was not the last used isotope
145  {
146  in = false; // By default the isotope haven't be found in AMDB
147  lastP = 0.; // New momentum history (nothing to compare with)
148  lastN = tgN; // The last N of the calculated nucleus
149  lastZ = tgZ; // The last Z of the calculated nucleus
150  lastI = colN.size(); // Size of the Associative Memory DB in the heap
151  j = 0; // A#0f records found in DB for this projectile
152 
153  if(lastI) for(G4int i=0; i<lastI; i++) // AMDB exists, try to find the (Z,N) isotope
154  {
155  if(colN[i]==tgN && colZ[i]==tgZ) // Try the record "i" in the AMDB
156  {
157  lastI=i; // Remember the index for future fast/last use
158  lastTH =colTH[i]; // The last THreshold (A-dependent)
159 
160  if(pMom<=lastTH)
161  {
162  return 0.; // Energy is below the Threshold value
163  }
164  lastP =colP [i]; // Last Momentum (A-dependent)
165  lastCS =colCS[i]; // Last CrossSect (A-dependent)
166  in = true; // This is the case when the isotop is found in DB
167  // Momentum pMom is in IU ! @@ Units
168  lastCS=CalculateCrossSection(-1,j,PDG,lastZ,lastN,pMom); // read & update
169 
170  if(lastCS<=0. && pMom>lastTH) // Correct the threshold (@@ No intermediate Zeros)
171  {
172  lastCS=0.;
173  lastTH=pMom;
174  }
175  break; // Go out of the LOOP
176  }
177  j++; // Increment a#0f records found in DB
178  }
179  if(!in) // This isotope has not been calculated previously
180  {
182  lastCS=CalculateCrossSection(0,j,PDG,lastZ,lastN,pMom); //calculate & create
183  //if(lastCS>0.) // It means that the AMBD was initialized
184  //{
185 
186  lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
187  colN.push_back(tgN);
188  colZ.push_back(tgZ);
189  colP.push_back(pMom);
190  colTH.push_back(lastTH);
191  colCS.push_back(lastCS);
192  //} // M.K. Presence of H1 with high threshold breaks the syncronization
193  return lastCS*millibarn;
194  } // End of creation of the new set of parameters
195  else
196  {
197  colP[lastI]=pMom;
198  colCS[lastI]=lastCS;
199  }
200  } // End of parameters udate
201  else if(pMom<=lastTH)
202  {
203  return 0.; // Momentum is below the Threshold Value -> CS=0
204  }
205  else // It is the last used -> use the current tables
206  {
207  lastCS=CalculateCrossSection(1,j,PDG,lastZ,lastN,pMom); // Only read and UpdateDB
208  lastP=pMom;
209  }
210  return lastCS*millibarn;
211 }
212 
213 // The main member function giving the gamma-A cross section (E in GeV, CS in mb)
214 G4double G4ChipsHyperonInelasticXS::CalculateCrossSection(G4int F, G4int I,
215  G4int, G4int targZ, G4int targN, G4double Momentum)
216 {
217  static const G4double THmin=27.; // default minimum Momentum (MeV/c) Threshold
218  static const G4double THmiG=THmin*.001; // minimum Momentum (GeV/c) Threshold
219  static const G4double dP=10.; // step for the LEN (Low ENergy) table MeV/c
220  static const G4double dPG=dP*.001; // step for the LEN (Low ENergy) table GeV/c
221  static const G4int nL=105; // A#of LEN points in E (step 10 MeV/c)
222  static const G4double Pmin=THmin+(nL-1)*dP; // minP for the HighE part with safety
223  static const G4double Pmax=227000.; // maxP for the HEN (High ENergy) part 227 GeV
224  static const G4int nH=224; // A#of HEN points in lnE
225  static const G4double milP=G4Log(Pmin);// Low logarithm energy for the HEN part
226  static const G4double malP=G4Log(Pmax);// High logarithm energy (each 2.75 percent)
227  static const G4double dlP=(malP-milP)/(nH-1); // Step in log energy in the HEN part
228  static const G4double milPG=G4Log(.001*Pmin);// Low logarithmEnergy for HEN part GeV/c
229  G4double sigma=0.;
230  if(F&&I) sigma=0.; // @@ *!* Fake line *!* to use F & I !!!Temporary!!!
231  //G4double A=targN+targZ; // A of the target
232  if(F<=0) // This isotope was not the last used isotop
233  {
234  if(F<0) // This isotope was found in DAMDB =-----=> RETRIEVE
235  {
236  G4int sync=LEN->size();
237  if(sync<=I) G4cerr<<"*!*G4QPiMinusNuclCS::CalcCrosSect:Sync="<<sync<<"<="<<I<<G4endl;
238  lastLEN=(*LEN)[I]; // Pointer to prepared LowEnergy cross sections
239  lastHEN=(*HEN)[I]; // Pointer to prepared High Energy cross sections
240  }
241  else // This isotope wasn't calculated before => CREATE
242  {
243  lastLEN = new G4double[nL]; // Allocate memory for the new LEN cross sections
244  lastHEN = new G4double[nH]; // Allocate memory for the new HEN cross sections
245  // --- Instead of making a separate function ---
246  G4double P=THmiG; // Table threshold in GeV/c
247  for(G4int k=0; k<nL; k++)
248  {
249  lastLEN[k] = CrossSectionLin(targZ, targN, P);
250  P+=dPG;
251  }
252  G4double lP=milPG;
253  for(G4int n=0; n<nH; n++)
254  {
255  lastHEN[n] = CrossSectionLog(targZ, targN, lP);
256  lP+=dlP;
257  }
258  // --- End of possible separate function
259  // *** The synchronization check ***
260  G4int sync=LEN->size();
261  if(sync!=I)
262  {
263  G4cerr<<"***G4QHyperNuclCS::CalcCrossSect: Sinc="<<sync<<"#"<<I<<", Z=" <<targZ
264  <<", N="<<targN<<", F="<<F<<G4endl;
265  //G4Exception("G4PiMinusNuclearCS::CalculateCS:","39",FatalException,"DBoverflow");
266  }
267  LEN->push_back(lastLEN); // remember the Low Energy Table
268  HEN->push_back(lastHEN); // remember the High Energy Table
269  } // End of creation of the new set of parameters
270  } // End of parameters udate
271  // =--------------------------= NOW the Magic Formula =------------------------------=
272  if (Momentum<lastTH) return 0.; // It must be already checked in the interface class
273  else if (Momentum<Pmin) // High Energy region
274  {
275  sigma=EquLinearFit(Momentum,nL,THmin,dP,lastLEN);
276  }
277  else if (Momentum<Pmax) // High Energy region
278  {
279  G4double lP=G4Log(Momentum);
280  sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN);
281  }
282  else // UHE region (calculation, not frequent)
283  {
284  G4double P=0.001*Momentum; // Approximation formula is for P in GeV/c
285  sigma=CrossSectionFormula(targZ, targN, P, G4Log(P));
286  }
287  if(sigma<0.) return 0.;
288  return sigma;
289 }
290 
291 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) (P in GeV/c)
292 G4double G4ChipsHyperonInelasticXS::CrossSectionLin(G4int tZ, G4int tN, G4double P)
293 {
294  G4double lP=G4Log(P);
295  return CrossSectionFormula(tZ, tN, P, lP);
296 }
297 
298 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
299 G4double G4ChipsHyperonInelasticXS::CrossSectionLog(G4int tZ, G4int tN, G4double lP)
300 {
301  G4double P=G4Exp(lP);
302  return CrossSectionFormula(tZ, tN, P, lP);
303 }
304 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
305 G4double G4ChipsHyperonInelasticXS::CrossSectionFormula(G4int tZ, G4int tN,
306  G4double P, G4double lP)
307 {
308  G4double sigma=0.;
309  if(tZ==1 && !tN) // Hyperon-P interaction from G4QuasiElastRatios
310  {
311  G4double ld=lP-3.5;
312  G4double ld2=ld*ld;
313  G4double p2=P*P;
314  G4double p4=p2*p2;
315  G4double sp=std::sqrt(P);
316  G4double El=(.0557*ld2+6.72+99./p2)/(1.+2./sp+2./p4);
317  G4double To=(.3*ld2+38.2+900./sp)/(1.+27./sp+3./p4);
318  sigma=To-El;
319  }
320  else if(tZ<97 && tN<152) // General solution
321  {
322  G4double d=lP-4.2;
323  G4double p2=P*P;
324  G4double p4=p2*p2;
325  G4double sp=std::sqrt(P);
326  G4double ssp=std::sqrt(sp);
327  G4double a=tN+tZ; // A of the target
328  G4double al=G4Log(a);
329  G4double sa=std::sqrt(a);
330  G4double a2=a*a;
331  G4double a2s=a2*sa;
332  G4double a4=a2*a2;
333  G4double a8=a4*a4;
334  G4double c=(170.+3600./a2s)/(1.+65./a2s);
335  G4double gg=42.*(G4Exp(al*0.8)+4.E-8*a4)/(1.+28./a)/(1.+5.E-5*a2);
336  G4double e=390.; // Defolt values for deutrons
337  G4double r=0.27;
338  G4double h=2.E-7;
339  G4double t=0.3;
340  if(tZ>1 || tN>1)
341  {
342  e=380.+18.*a2/(1.+a2/60.)/(1.+2.E-19*a8);
343  r=0.15;
344  h=1.E-8*a2/(1.+a2/17.)/(1.+3.E-20*a8);
345  t=(.2+.00056*a2)/(1.+a2*.0006);
346  }
347  sigma=(c+d*d)/(1.+t/ssp+r/p4)+(gg+e*G4Exp(-6.*P))/(1.+h/p4/p4);
348 #ifdef pdebug
349  G4cout<<"G4QHyperonNucCS::CSForm: A="<<a<<",P="<<P<<",CS="<<sigma<<",c="<<c<<",g="<<gg
350  <<",d="<<d<<",r="<<r<<",e="<<e<<",h="<<h<<G4endl;
351 #endif
352  }
353  else
354  {
355  G4cerr<<"-Warning-G4QHyperonNuclearCroSect::CSForm:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl;
356  sigma=0.;
357  }
358  if(sigma<0.) return 0.;
359  return sigma;
360 }
361 
362 G4double G4ChipsHyperonInelasticXS::EquLinearFit(G4double X, G4int N, G4double X0, G4double DX, G4double* Y)
363 {
364  if(DX<=0. || N<2)
365  {
366  G4cerr<<"***G4ChipsHyperonInelasticXS::EquLinearFit: DX="<<DX<<", N="<<N<<G4endl;
367  return Y[0];
368  }
369 
370  G4int N2=N-2;
371  G4double d=(X-X0)/DX;
372  G4int jj=static_cast<int>(d);
373  if (jj<0) jj=0;
374  else if(jj>N2) jj=N2;
375  d-=jj; // excess
376  G4double yi=Y[jj];
377  G4double sigma=yi+(Y[jj+1]-yi)*d;
378 
379  return sigma;
380 }
const int N
Definition: mixmax.h:43
double Y(double density)
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
static const G4int nH
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
G4ParticleDefinition * GetDefinition() const
static const G4int nL
int G4int
Definition: G4Types.hh:78
static double P[]
G4double GetTotalMomentum() const
G4GLOB_DLL std::ostream G4cout
double A(double temperature)
bool G4bool
Definition: G4Types.hh:79
G4double G4Log(G4double x)
Definition: G4Log.hh:230
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
#define G4_DECLARE_XS_FACTORY(cross_section)
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
#define G4endl
Definition: G4ios.hh:61
double G4double
Definition: G4Types.hh:76
static const G4double THmin
static constexpr double millibarn
Definition: G4SIunits.hh:106
virtual void CrossSectionDescription(std::ostream &) const
G4GLOB_DLL std::ostream G4cerr