70   outFile << 
"G4LFission is one of the Low Energy Parameterized\n"    71           << 
"(LEP) models used to implement neutron-induced fission of\n"    72           << 
"nuclei.  It is a re-engineered version of the GHEISHA code\n"    73           << 
"of H. Fesefeldt which emits neutrons and gammas but no\n"    74           << 
"nuclear fragments.  The model is applicable to all incident\n"    75           << 
"neutron energies.\n";
    84    for (i = 2; i <= 10; i++) {
    86       xxx = std::sqrt(2.29*xx);
    89    for (i = 1; i <= 10; i++) {
   115       G4cout << 
"G4LFission:ApplyYourself: incident particle:" << 
G4endl;
   126       G4cout << 
"G4LFission:ApplyYourself: material:" << 
G4endl;
   129       G4cout << 
"atomic mass " << 
   134   E0 = std::sqrt(std::abs(E02));
   135   if (E02 < 0) E0 = -E0;
   148    if (e1 < 1.) e1 = 1.;
   154    if (!photofission) avern = 2.569 + 0.900*
G4Log(e1);
   164    G4int ng = 
static_cast<G4int>(averg + ran*3. + 0.5);
   173    for (i = 1; i <= 
nn; i++) {
   176       for (j = 1; j <= 10; j++) {
   177          if (ran < 
spneut[j-1]) 
goto label12;
   192    for (i = 1; i <= ng; i++) {
   206    for (i = 1; i <= nn + ng; i++) {
   210       G4double sint = std::sqrt(std::abs(1. - cost*cost));
   216       G4double px = pp*sint*std::sin(phi);
   217       G4double py = pp*sint*std::cos(phi);
   225       a = (a/(E + E0) - e)/E0;
   230       G4double p2 = px*px + py*py + pz*pz;
   232       e = std::sqrt(e0*e0 + p2);
   255    if (ia < 1) 
return 0;
   257    if (iz < 0) 
return 0;
   258    if (iz > ia) 
return 0;
   261       if (iz == 0) 
return rmn;          
   262       if (iz == 1) 
return rmp + rmel;   
   264    else if (ia == 2 && iz == 1) {
   267    else if (ia == 4 && iz == 2) {
   272   G4double mass = (A - 
Z)*rmn + Z*rmp + Z*rmel - 15.67*A
   274                   + 93.15*(A/2. - 
Z)*(A/2. - Z)/A
   275                   + 0.6984523*Z*Z/Pow->
A13(A);
   278   if (ipp == izz) mass = mass + (ipp + izz -1)*12.*Pow->
powA(A, -0.5);
   286   return std::pair<G4double, G4double>(5*
perCent,250*
GeV);
 
static G4Pow * GetInstance()
 
static G4Electron * ElectronDefinition()
 
ThreeVector shoot(const G4int Ap, const G4int Af)
 
G4HadSecondary * GetSecondary(size_t i)
 
const G4LorentzVector & Get4Momentum() const
 
static G4Proton * ProtonDefinition()
 
G4double GetTotalEnergy() const
 
G4double GetTotalMomentum() const
 
void SetMomentumDirection(const G4ThreeVector &aDirection)
 
static G4double Atomas(const G4double A, const G4double Z)
 
G4double A23(G4double A) const
 
G4double GetTotalEnergy() const
 
virtual const std::pair< G4double, G4double > GetFatalEnergyCheckLevels() const
 
void SetStatusChange(G4HadFinalStateStatus aS)
 
virtual void ModelDescription(std::ostream &outFile) const
 
void SetMinEnergy(G4double anEnergy)
 
G4GLOB_DLL std::ostream G4cout
 
double A(double temperature)
 
static const double twopi
 
G4LFission(const G4String &name="G4LFission")
 
static const double perCent
 
void SetKineticEnergy(G4double aEnergy)
 
G4double GetTotalMomentum() const
 
G4double G4Log(G4double x)
 
G4double G4Exp(G4double initial_x)
Exponential Function double precision. 
 
const G4ParticleDefinition * GetDefinition() const
 
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
G4double GetKineticEnergy() const
 
G4double A13(G4double A) const
 
G4double GetPDGMass() const
 
G4DynamicParticle * GetParticle()
 
void SetMaxEnergy(const G4double anEnergy)
 
G4HadFinalState theParticleChange
 
G4ParticleDefinition * GetDefinition() const
 
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
 
G4double powA(G4double A, G4double y) const
 
G4ThreeVector G4ParticleMomentum
 
static G4Deuteron * DeuteronDefinition()
 
static G4Alpha * AlphaDefinition()
 
static G4Neutron * NeutronDefinition()
 
G4double GetPDGCharge() const
 
static G4Gamma * GammaDefinition()