Geant4  10.01.p03
G4FissionLibrary.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // This software was developed by Lawrence Livermore National Laboratory.
28 //
29 // Redistribution and use in source and binary forms, with or without
30 // modification, are permitted provided that the following conditions are met:
31 //
32 // 1. Redistributions of source code must retain the above copyright notice,
33 // this list of conditions and the following disclaimer.
34 // 2. Redistributions in binary form must reproduce the above copyright notice,
35 // this list of conditions and the following disclaimer in the documentation
36 // and/or other materials provided with the distribution.
37 // 3. The name of the author may not be used to endorse or promote products
38 // derived from this software without specific prior written permission.
39 //
40 // THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
41 // WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
42 // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
43 // EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
45 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
46 // OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
47 // WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
48 // OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
49 // ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
50 //
51 // Copyright (c) 2006 The Regents of the University of California.
52 // All rights reserved.
53 // UCRL-CODE-224807
54 //
55 //
56 // $Id: G4FissionLibrary.cc 67966 2013-03-13 09:38:38Z gcosmo $
57 //
58 // neutron_hp -- source file
59 // J.M. Verbeke, Jan-2007
60 // A low energy neutron-induced fission model.
61 //
62 
63 #include "G4FissionLibrary.hh"
64 #include "G4NeutronHPManager.hh"
65 #include "G4SystemOfUnits.hh"
66 
68  : G4NeutronHPFinalState(), theIsotope(0), targetMass(0.0)
69 {
70  hasXsec = false;
71  fe=0;
72 }
73 
75 {}
76 
78 {
79  G4FissionLibrary * theNew = new G4FissionLibrary;
80  return theNew;
81 }
82 
83 //void G4FissionLibrary::Init (G4double A, G4double Z, G4String & dirName, G4String &)
85 {
86  G4String tString = "/FS/";
87  G4bool dbool;
88  theIsotope = static_cast<G4int>(1000*Z+A);
89  G4NeutronHPDataUsed aFile = theNames.GetName(static_cast<G4int>(A), static_cast<G4int>(Z), M, dirName, tString, dbool);
90  G4String filename = aFile.GetName();
91 
92  if(!dbool)
93  {
94  hasAnyData = false;
95  hasFSData = false;
96  hasXsec = false;
97  return;
98  }
99  //std::ifstream theData(filename, std::ios::in);
100  std::istringstream theData(std::ios::in);
101  G4NeutronHPManager::GetInstance()->GetDataStream(filename,theData);
102 
103  // here it comes
104  G4int infoType, dataType;
105  hasFSData = false;
106  while (theData >> infoType)
107  {
108  hasFSData = true;
109  theData >> dataType;
110  switch(infoType)
111  {
112  case 1:
113  if(dataType==4) theNeutronAngularDis.Init(theData);
114  if(dataType==5) thePromptNeutronEnDis.Init(theData);
115  if(dataType==12) theFinalStatePhotons.InitMean(theData);
116  if(dataType==14) theFinalStatePhotons.InitAngular(theData);
117  if(dataType==15) theFinalStatePhotons.InitEnergies(theData);
118  break;
119  case 2:
120  if(dataType==1) theFinalStateNeutrons.InitMean(theData);
121  break;
122  case 3:
123  if(dataType==1) theFinalStateNeutrons.InitDelayed(theData);
124  if(dataType==5) theDelayedNeutronEnDis.Init(theData);
125  break;
126  case 4:
127  if(dataType==1) theFinalStateNeutrons.InitPrompt(theData);
128  break;
129  case 5:
130  if(dataType==1) theEnergyRelease.Init(theData);
131  break;
132  default:
133  G4cout << "G4FissionLibrary::Init: unknown data type"<<dataType<<G4endl;
134  throw G4HadronicException(__FILE__, __LINE__, "G4FissionLibrary::Init: unknown data type");
135  break;
136  }
137  }
139  //theData.close();
140 }
141 
143 {
144 
145  if ( theResult.Get() == NULL ) theResult.Put( new G4HadFinalState );
146  theResult.Get()->Clear();
147 
148  // prepare neutron
149  G4double eKinetic = theTrack.GetKineticEnergy();
150  const G4HadProjectile* incidentParticle = &theTrack;
151  G4ReactionProduct theNeutron(incidentParticle->GetDefinition() );
152  theNeutron.SetMomentum(incidentParticle->Get4Momentum().vect() );
153  theNeutron.SetKineticEnergy(eKinetic);
154 
155  // prepare target
156  G4Nucleus aNucleus;
158  G4ThreeVector neuVelo = (1./incidentParticle->GetDefinition()->GetPDGMass())*theNeutron.GetMomentum();
159  theTarget = aNucleus.GetBiasedThermalNucleus( targetMass, neuVelo, theTrack.GetMaterial()->GetTemperature());
160 
161  // set neutron and target in the FS classes
162  theNeutronAngularDis.SetNeutron(theNeutron);
163  theNeutronAngularDis.SetTarget(theTarget);
164 
165  // boost to target rest system
166  theNeutron.Lorentz(theNeutron, -1*theTarget);
167 
168  eKinetic = theNeutron.GetKineticEnergy();
169 
170  // dice neutron and gamma multiplicities, energies and momenta in Lab. @@
171  // no energy conservation on an event-to-event basis. we rely on the data to be ok. @@
172  // also for mean, we rely on the consistency of the data. @@
173 
174  G4int nPrompt=0, gPrompt=0;
175  SampleMult(theTrack, &nPrompt, &gPrompt, eKinetic);
176 
177  // Build neutrons and add them to dynamic particle vector
178  G4double momentum;
179  for(G4int i=0; i<nPrompt; i++)
180  {
184  momentum = it->GetTotalMomentum();
185  G4ThreeVector temp(momentum*fe->getNeutronDircosu(i),
186  momentum*fe->getNeutronDircosv(i),
187  momentum*fe->getNeutronDircosw(i));
188  it->SetMomentum( temp );
189 // it->SetGlobalTime(fe->getNeutronAge(i)*second);
190  theResult.Get()->AddSecondary(it);
191 // G4cout <<"G4FissionLibrary::ApplyYourself: energy of prompt neutron " << i << " = " << it->GetKineticEnergy()<<G4endl;
192  }
193 
194  // Build gammas, lorentz transform them, and add them to dynamic particle vector
195  for(G4int i=0; i<gPrompt; i++)
196  {
197  G4ReactionProduct * thePhoton = new G4ReactionProduct;
198  thePhoton->SetDefinition(G4Gamma::Gamma());
199  thePhoton->SetKineticEnergy(fe->getPhotonEnergy(i)*MeV);
200  momentum = thePhoton->GetTotalMomentum();
201  G4ThreeVector temp(momentum*fe->getPhotonDircosu(i),
202  momentum*fe->getPhotonDircosv(i),
203  momentum*fe->getPhotonDircosw(i));
204  thePhoton->SetMomentum( temp );
205  thePhoton->Lorentz(*thePhoton, -1.*theTarget);
206 
208  it->SetDefinition(thePhoton->GetDefinition());
209  it->SetMomentum(thePhoton->GetMomentum());
210 // it->SetGlobalTime(fe->getPhotonAge(i)*second);
211 // G4cout <<"G4FissionLibrary::ApplyYourself: energy of prompt photon " << i << " = " << it->GetKineticEnergy()<<G4endl;
212  theResult.Get()->AddSecondary(it);
213  delete thePhoton;
214  }
215 // G4cout <<"G4FissionLibrary::ApplyYourself: Number of secondaries = "<<theResult.GetNumberOfSecondaries()<< G4endl;
216 // G4cout <<"G4FissionLibrary::ApplyYourself: Number of induced prompt neutron = "<<nPrompt<<G4endl;
217 // G4cout <<"G4FissionLibrary::ApplyYourself: Number of induced prompt photons = "<<gPrompt<<G4endl;
218 
219  // finally deal with local energy depositions.
220  G4double eDepByFragments = theEnergyRelease.GetFragmentKinetic();
221  theResult.Get()->SetLocalEnergyDeposit(eDepByFragments);
222 // G4cout << "G4FissionLibrary::local energy deposit" << eDepByFragments<<G4endl;
223  // clean up the primary neutron
225  return theResult.Get();
226 }
227 
228 void G4FissionLibrary::SampleMult(const G4HadProjectile & theTrack, G4int* nPrompt,
229  G4int* gPrompt, G4double eKinetic)
230 {
231  G4double promptNeutronMulti = 0;
232  promptNeutronMulti = theFinalStateNeutrons.GetPrompt(eKinetic); // prompt nubar from Geant
233  G4double delayedNeutronMulti = 0;
234  delayedNeutronMulti = theFinalStateNeutrons.GetDelayed(eKinetic); // delayed nubar from Geant
235 
236  G4double time = theTrack.GetGlobalTime()/second;
237  G4double totalNeutronMulti = theFinalStateNeutrons.GetMean(eKinetic);
238  if(delayedNeutronMulti==0&&promptNeutronMulti==0) {
239  // no data for prompt and delayed neutrons in Geant
240  // but there is perhaps data for the total neutron multiplicity, in which case
241  // we use it for prompt neutron emission
242  if (fe != 0) delete fe;
243  fe = new G4fissionEvent(theIsotope, time, totalNeutronMulti, eKinetic);
244  } else {
245  // prompt nubar != 0 || delayed nubar != 0
246  if (fe != 0) delete fe;
247  fe = new G4fissionEvent(theIsotope, time, promptNeutronMulti, eKinetic);
248  }
249  *nPrompt = fe->getNeutronNu();
250  if (*nPrompt == -1) *nPrompt = 0; // the fission library libFission.a has no data for neutrons
251  *gPrompt = fe->getPhotonNu();
252  if (*gPrompt == -1) *gPrompt = 0; // the fission library libFission.a has no data for gammas
253 }
254 
void SetNeutron(const G4ReactionProduct &aNeutron)
G4NeutronHPFinalState * New()
static const double MeV
Definition: G4SIunits.hh:193
void SetMomentum(const G4ThreeVector &momentum)
G4double GetTotalMomentum() const
void Lorentz(const G4ReactionProduct &p1, const G4ReactionProduct &p2)
G4Cache< G4HadFinalState * > theResult
CLHEP::Hep3Vector G4ThreeVector
void Init(G4double A, G4double Z, G4int M, G4String &dirName, G4String &)
G4NeutronHPEnergyDistribution theDelayedNeutronEnDis
void Init(std::istream &aDataFile)
void SetKineticEnergy(const G4double en)
G4NeutronHPNeutronYield theFinalStateNeutrons
static G4NeutronHPManager * GetInstance()
void InitDelayed(std::istream &aDataFile)
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4NeutronHPFissionERelease theEnergyRelease
value_type & Get() const
Definition: G4Cache.hh:282
void SetTarget(const G4ReactionProduct &aTarget)
G4NeutronHPEnergyDistribution thePromptNeutronEnDis
void GetDataStream(G4String, std::istringstream &iss)
G4double getPhotonEnergy(G4int index)
G4NeutronHPDataUsed GetName(G4int A, G4int Z, G4String base, G4String rest, G4bool &active)
int G4int
Definition: G4Types.hh:78
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
G4double getNeutronEnergy(G4int index)
G4int getNeutronNu()
G4double GetTotalMomentum() const
G4double GetMean(G4double anEnergy)
void SetStatusChange(G4HadFinalStateStatus aS)
void SampleMult(const G4HadProjectile &theTrack, G4int *nPrompt, G4int *gPrompt, G4double eKinetic)
void InitAngular(std::istream &aDataFile)
const G4ParticleDefinition * GetDefinition() const
G4ReactionProduct GetBiasedThermalNucleus(G4double aMass, G4ThreeVector aVelocity, G4double temp=-1) const
Definition: G4Nucleus.cc:108
G4GLOB_DLL std::ostream G4cout
const G4ParticleDefinition * GetDefinition() const
G4double getNeutronDircosu(G4int index)
G4NeutronHPPhotonDist theFinalStatePhotons
bool G4bool
Definition: G4Types.hh:79
G4double GetKineticEnergy() const
G4double GetGlobalTime() const
G4ErrorTarget * theTarget
Definition: errprop.cc:59
void InitEnergies(std::istream &aDataFile)
static const double second
Definition: G4SIunits.hh:138
void Init(std::istream &aDataFile)
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
static const G4double A[nN]
const G4LorentzVector & Get4Momentum() const
void SetKineticEnergy(G4double aEnergy)
G4HadFinalState * ApplyYourself(const G4HadProjectile &theTrack)
G4double GetDelayed(G4double anEnergy)
G4bool InitMean(std::istream &aDataFile)
G4double GetPDGMass() const
G4double getNeutronDircosv(G4int index)
G4double getPhotonDircosv(G4int index)
G4ThreeVector GetMomentum() const
G4double GetTemperature() const
Definition: G4Material.hh:182
void SetLocalEnergyDeposit(G4double aE)
void InitPrompt(std::istream &aDataFile)
#define G4endl
Definition: G4ios.hh:61
G4double getPhotonDircosu(G4int index)
const G4Material * GetMaterial() const
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
double G4double
Definition: G4Types.hh:76
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
G4double GetPrompt(G4double anEnergy)
G4fissionEvent * fe
G4NeutronHPAngular theNeutronAngularDis
void Put(const value_type &val) const
Definition: G4Cache.hh:286
void InitMean(std::istream &aDataFile)
G4double getNeutronDircosw(G4int index)
G4double getPhotonDircosw(G4int index)