Geant4  10.01.p03
G4RPGKPlusInelastic.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: G4RPGKPlusInelastic.cc 79697 2014-03-12 13:10:09Z gcosmo $
28 //
29 
30 #include "G4RPGKPlusInelastic.hh"
31 #include "G4PhysicalConstants.hh"
32 #include "G4SystemOfUnits.hh"
33 #include "Randomize.hh"
34 
37  G4Nucleus &targetNucleus )
38 {
39  const G4HadProjectile *originalIncident = &aTrack;
40  if (originalIncident->GetKineticEnergy()<= 0.1*MeV)
41  {
44  theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
45  return &theParticleChange;
46  }
47 
48  // create the target particle
49 
50  G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
51  G4ReactionProduct targetParticle( originalTarget->GetDefinition() );
52 
53  if( verboseLevel > 1 )
54  {
55  const G4Material *targetMaterial = aTrack.GetMaterial();
56  G4cout << "G4RPGKPlusInelastic::ApplyYourself called" << G4endl;
57  G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy() << "MeV, ";
58  G4cout << "target material = " << targetMaterial->GetName() << ", ";
59  G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
60  << G4endl;
61  }
62 
63  G4ReactionProduct currentParticle(originalIncident->GetDefinition() );
64  currentParticle.SetMomentum( originalIncident->Get4Momentum().vect() );
65  currentParticle.SetKineticEnergy( originalIncident->GetKineticEnergy() );
66 
67  // Fermi motion and evaporation
68  // As of Geant3, the Fermi energy calculation had not been Done
69 
70  G4double ek = originalIncident->GetKineticEnergy();
71  G4double amas = originalIncident->GetDefinition()->GetPDGMass();
72 
73  G4double tkin = targetNucleus.Cinema( ek );
74  ek += tkin;
75  currentParticle.SetKineticEnergy( ek );
76  G4double et = ek + amas;
77  G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
78  G4double pp = currentParticle.GetMomentum().mag();
79  if( pp > 0.0 )
80  {
81  G4ThreeVector momentum = currentParticle.GetMomentum();
82  currentParticle.SetMomentum( momentum * (p/pp) );
83  }
84 
85  // calculate black track energies
86 
87  tkin = targetNucleus.EvaporationEffects( ek );
88  ek -= tkin;
89  currentParticle.SetKineticEnergy( ek );
90  et = ek + amas;
91  p = std::sqrt( std::abs((et-amas)*(et+amas)) );
92  pp = currentParticle.GetMomentum().mag();
93  if( pp > 0.0 )
94  {
95  G4ThreeVector momentum = currentParticle.GetMomentum();
96  currentParticle.SetMomentum( momentum * (p/pp) );
97  }
98 
99  G4ReactionProduct modifiedOriginal = currentParticle;
100 
101  currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
102  targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
103  G4bool incidentHasChanged = false;
104  G4bool targetHasChanged = false;
105  G4bool quasiElastic = false;
106  G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
107  G4int vecLen = 0;
108  vec.Initialize( 0 );
109 
110  const G4double cutOff = 0.1*MeV;
111  if( currentParticle.GetKineticEnergy() > cutOff )
112  Cascade( vec, vecLen,
113  originalIncident, currentParticle, targetParticle,
114  incidentHasChanged, targetHasChanged, quasiElastic );
115 
116  CalculateMomenta( vec, vecLen,
117  originalIncident, originalTarget, modifiedOriginal,
118  targetNucleus, currentParticle, targetParticle,
119  incidentHasChanged, targetHasChanged, quasiElastic );
120 
121  SetUpChange( vec, vecLen,
122  currentParticle, targetParticle,
123  incidentHasChanged );
124 
125  delete originalTarget;
126 
127  return &theParticleChange;
128 }
129 
130 
133  G4int &vecLen,
134  const G4HadProjectile *originalIncident,
135  G4ReactionProduct &currentParticle,
136  G4ReactionProduct &targetParticle,
137  G4bool &incidentHasChanged,
138  G4bool &targetHasChanged,
139  G4bool &quasiElastic )
140 {
141  // Derived from H. Fesefeldt's original FORTRAN code CASKP
142  //
143  // K+ undergoes interaction with nucleon within a nucleus. Check if it is
144  // energetically possible to produce pions/kaons. In not, assume nuclear excitation
145  // occurs and input particle is degraded in energy. No other particles are produced.
146  // If reaction is possible, find the correct number of pions/protons/neutrons
147  // produced using an interpolation to multiplicity data. Replace some pions or
148  // protons/neutrons by kaons or strange baryons according to the average
149  // multiplicity per Inelastic reaction.
150  //
151  const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass();
152  const G4double etOriginal = originalIncident->GetTotalEnergy();
153  const G4double targetMass = targetParticle.GetMass();
154  G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
155  targetMass*targetMass +
156  2.0*targetMass*etOriginal );
157  G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
158  if( availableEnergy < G4PionPlus::PionPlus()->GetPDGMass() )
159  {
160  quasiElastic = true;
161  return;
162  }
163  static G4ThreadLocal G4bool first = true;
164  const G4int numMul = 1200;
165  const G4int numSec = 60;
166  static G4ThreadLocal G4double protmul[numMul], protnorm[numSec]; // proton constants
167  static G4ThreadLocal G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
168 
169  // np = number of pi+, nneg = number of pi-, nz = number of pi0
170 
171  G4int nt=0, np=0, nneg=0, nz=0;
172  const G4double c = 1.25;
173  const G4double b[] = { 0.70, 0.70 };
174  if( first ) // compute normalization constants, this will only be Done once
175  {
176  first = false;
177  G4int i;
178  for( i=0; i<numMul; ++i )protmul[i] = 0.0;
179  for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
180  G4int counter = -1;
181  for( np=0; np<(numSec/3); ++np )
182  {
183  for( nneg=std::max(0,np-2); nneg<=np; ++nneg )
184  {
185  for( nz=0; nz<numSec/3; ++nz )
186  {
187  if( ++counter < numMul )
188  {
189  nt = np+nneg+nz;
190  if( nt > 0 )
191  {
192  protmul[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
193  protnorm[nt-1] += protmul[counter];
194  }
195  }
196  }
197  }
198  }
199  for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
200  for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
201  counter = -1;
202  for( np=0; np<numSec/3; ++np )
203  {
204  for( nneg=std::max(0,np-1); nneg<=(np+1); ++nneg )
205  {
206  for( nz=0; nz<numSec/3; ++nz )
207  {
208  if( ++counter < numMul )
209  {
210  nt = np+nneg+nz;
211  if( (nt>0) && (nt<=numSec) )
212  {
213  neutmul[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
214  neutnorm[nt-1] += neutmul[counter];
215  }
216  }
217  }
218  }
219  }
220  for( i=0; i<numSec; ++i )
221  {
222  if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
223  if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
224  }
225  } // end of initialization
226 
227  const G4double expxu = 82.; // upper bound for arg. of exp
228  const G4double expxl = -expxu; // lower bound for arg. of exp
233  G4int ieab = static_cast<G4int>(availableEnergy*5.0/GeV);
234  const G4double supp[] = {0.,0.4,0.55,0.65,0.75,0.82,0.86,0.90,0.94,0.98};
235  G4double test, w0, wp, wt, wm;
236  if( (availableEnergy < 2.0*GeV) && (G4UniformRand() >= supp[ieab]) )
237  {
238  // suppress high multiplicity events at low momentum
239  // only one pion will be produced
240 
241  nneg = np = nz = 0;
242  if( targetParticle.GetDefinition() == aProton )
243  {
244  test = std::exp( std::min( expxu, std::max( expxl, -sqr(1.0+b[0])/(2.0*c*c) ) ) );
245  w0 = test;
246  wp = test*2.0;
247  if( G4UniformRand() < w0/(w0+wp) )
248  nz = 1;
249  else
250  np = 1;
251  }
252  else // target is a neutron
253  {
254  test = std::exp( std::min( expxu, std::max( expxl, -sqr(1.0+b[1])/(2.0*c*c) ) ) );
255  w0 = test;
256  wp = test;
257  test = std::exp( std::min( expxu, std::max( expxl, -sqr(-1.0+b[1])/(2.0*c*c) ) ) );
258  wm = test;
259  wt = w0+wp+wm;
260  wp += w0;
261  G4double ran = G4UniformRand();
262  if( ran < w0/wt )
263  nz = 1;
264  else if( ran < wp/wt )
265  np = 1;
266  else
267  nneg = 1;
268  }
269  }
270  else
271  {
272  G4double n, anpn;
273  GetNormalizationConstant( availableEnergy, n, anpn );
274  G4double ran = G4UniformRand();
275  G4double dum, excs = 0.0;
276  if( targetParticle.GetDefinition() == aProton )
277  {
278  G4int counter = -1;
279  for( np=0; (np<numSec/3) && (ran>=excs); ++np )
280  {
281  for( nneg=std::max(0,np-2); (nneg<=np) && (ran>=excs); ++nneg )
282  {
283  for( nz=0; (nz<numSec/3) && (ran>=excs); ++nz )
284  {
285  if( ++counter < numMul )
286  {
287  nt = np+nneg+nz;
288  if( nt > 0 )
289  {
290  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
291  dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
292  if( std::fabs(dum) < 1.0 )
293  {
294  if( test >= 1.0e-10 )excs += dum*test;
295  }
296  else
297  excs += dum*test;
298  }
299  }
300  }
301  }
302  }
303  if( ran >= excs )return; // 3 previous loops continued to the end
304  np--; nneg--; nz--;
305  }
306  else // target must be a neutron
307  {
308  G4int counter = -1;
309  for( np=0; (np<numSec/3) && (ran>=excs); ++np )
310  {
311  for( nneg=std::max(0,np-1); (nneg<=(np+1)) && (ran>=excs); ++nneg )
312  {
313  for( nz=0; (nz<numSec/3) && (ran>=excs); ++nz )
314  {
315  if( ++counter < numMul )
316  {
317  nt = np+nneg+nz;
318  if( (nt>=1) && (nt<=numSec) )
319  {
320  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
321  dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
322  if( std::fabs(dum) < 1.0 )
323  {
324  if( test >= 1.0e-10 )excs += dum*test;
325  }
326  else
327  excs += dum*test;
328  }
329  }
330  }
331  }
332  }
333  if( ran >= excs )return; // 3 previous loops continued to the end
334  np--; nneg--; nz--;
335  }
336  }
337 
338  if( targetParticle.GetDefinition() == aProton )
339  {
340  switch( np-nneg )
341  {
342  case 1:
343  if( G4UniformRand() < 0.5 )
344  {
345  if( G4UniformRand() < 0.5 )
346  currentParticle.SetDefinitionAndUpdateE( aKaonZS );
347  else
348  currentParticle.SetDefinitionAndUpdateE( aKaonZL );
349  incidentHasChanged = true;
350  }
351  else
352  {
353  targetParticle.SetDefinitionAndUpdateE( aNeutron );
354  targetHasChanged = true;
355  }
356  break;
357  case 2:
358  if( G4UniformRand() < 0.5 )
359  currentParticle.SetDefinitionAndUpdateE( aKaonZS );
360  else
361  currentParticle.SetDefinitionAndUpdateE( aKaonZL );
362  incidentHasChanged = true;
363  targetParticle.SetDefinitionAndUpdateE( aNeutron );
364  incidentHasChanged = true;
365  targetHasChanged = true;
366  break;
367  default:
368  break;
369  }
370  }
371  else // target is a neutron
372  {
373  switch( np-nneg )
374  {
375  case 0:
376  if( G4UniformRand() < 0.25 )
377  {
378  if( G4UniformRand() < 0.5 )
379  currentParticle.SetDefinitionAndUpdateE( aKaonZS );
380  else
381  currentParticle.SetDefinitionAndUpdateE( aKaonZL );
382  targetParticle.SetDefinitionAndUpdateE( aProton );
383  incidentHasChanged = true;
384  targetHasChanged = true;
385  }
386  break;
387  case 1:
388  if( G4UniformRand() < 0.5 )
389  currentParticle.SetDefinitionAndUpdateE( aKaonZS );
390  else
391  currentParticle.SetDefinitionAndUpdateE( aKaonZL );
392  incidentHasChanged = true;
393  break;
394  default: // assumes nneg = np+1 so charge is conserved
395  targetParticle.SetDefinitionAndUpdateE( aProton );
396  targetHasChanged = true;
397  break;
398  }
399  }
400 
401  SetUpPions(np, nneg, nz, vec, vecLen);
402  return;
403 }
404 
405  /* end of file */
406 
static const double MeV
Definition: G4SIunits.hh:193
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:264
CLHEP::Hep3Vector G4ThreeVector
void SetUpChange(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
void SetMomentum(const G4double x, const G4double y, const G4double z)
const G4String & GetName() const
Definition: G4Material.hh:178
const G4double pi
static G4KaonZeroLong * KaonZeroLong()
void SetSide(const G4int sid)
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
void CalculateMomenta(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void Cascade(G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool &quasiElastic)
G4ParticleDefinition * GetDefinition() const
#define G4ThreadLocal
Definition: tls.hh:89
void Initialize(G4int items)
Definition: G4FastVector.hh:63
int G4int
Definition: G4Types.hh:78
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
const G4String & GetParticleName() const
static unsigned wp
Definition: csz_inflate.cc:309
void SetStatusChange(G4HadFinalStateStatus aS)
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
const G4ParticleDefinition * GetDefinition() const
#define G4UniformRand()
Definition: Randomize.hh:93
G4GLOB_DLL std::ostream G4cout
const G4ParticleDefinition * GetDefinition() const
static G4KaonZeroShort * KaonZeroShort()
bool G4bool
Definition: G4Types.hh:79
G4double GetKineticEnergy() const
static G4Proton * Proton()
Definition: G4Proton.cc:93
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
static const double GeV
Definition: G4SIunits.hh:196
void SetDefinitionAndUpdateE(const G4ParticleDefinition *aParticleDefinition)
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
const G4int n
const G4LorentzVector & Get4Momentum() const
void SetEnergyChange(G4double anEnergy)
G4double GetPDGMass() const
T max(const T t1, const T t2)
brief Return the largest of the two arguments
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:368
T min(const T t1, const T t2)
brief Return the smallest of the two arguments
#define G4endl
Definition: G4ios.hh:61
const G4Material * GetMaterial() const
T sqr(const T &x)
Definition: templates.hh:145
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
double G4double
Definition: G4Types.hh:76
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen)
void SetMomentumChange(const G4ThreeVector &aV)
G4double GetMass() const
G4double GetTotalEnergy() const