Geant4  10.01.p01
G4ComponentGGHadronNucleusXsc.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // author: V. Grichine
27 //
28 // 25.04.12 V. Grichine - first implementation
29 
31 
32 #include "G4PhysicalConstants.hh"
33 #include "G4SystemOfUnits.hh"
34 #include "G4ParticleTable.hh"
35 #include "G4IonTable.hh"
36 #include "G4ParticleDefinition.hh"
37 #include "G4DynamicParticle.hh"
38 #include "G4HadronNucleonXsc.hh"
39 
40 
42 //
43 
45  : G4VComponentCrossSection("Glauber-Gribov"),
46 // fUpperLimit(100000*GeV),
47  fLowerLimit(10.*MeV),// fLowerLimit(3*GeV),
48  fRadiusConst(1.08*fermi), // 1.1, 1.3 ?
49  fTotalXsc(0.0), fElasticXsc(0.0), fInelasticXsc(0.0), fProductionXsc(0.0),
50  fDiffractionXsc(0.0)
51 // , fHadronNucleonXsc(0.0)
52 {
81  theA = G4Alpha::Alpha();
82  theHe3 = G4He3::He3();
83 
84  hnXsc = new G4HadronNucleonXsc();
85 }
86 
88 //
89 //
90 
92 {
93  if (hnXsc) delete hnXsc;
94 }
95 
97 
99  G4double kinEnergy,
100  G4int Z, G4int A)
101 {
102  G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.),
103  kinEnergy);
104  fTotalXsc = GetIsoCrossSection(aDP, Z, A);
105  delete aDP;
106 
107  return fTotalXsc;
108 }
109 
111 
113  G4double kinEnergy,
114  G4int Z, G4double A)
115 {
116  G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.),
117  kinEnergy);
118  fTotalXsc = GetIsoCrossSection(aDP, Z, G4int(A));
119  delete aDP;
120 
121  return fTotalXsc;
122 }
123 
125 
127  G4double kinEnergy,
128  G4int Z, G4int A)
129 {
130  G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.),
131  kinEnergy);
132  fTotalXsc = GetIsoCrossSection(aDP, Z, A);
133  delete aDP;
134 
135  return fInelasticXsc;
136 }
137 
139 
141  G4double kinEnergy,
142  G4int Z, G4int A)
143 {
144  G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.),
145  kinEnergy);
146  fTotalXsc = GetIsoCrossSection(aDP, Z, A);
147  delete aDP;
148 
149  return fProductionXsc;
150 }
151 
153 
155  G4double kinEnergy,
156  G4int Z, G4double A)
157 {
158  G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.),
159  kinEnergy);
160  fTotalXsc = GetIsoCrossSection(aDP, Z, G4int(A));
161  delete aDP;
162 
163  return fInelasticXsc;
164 }
165 
167 
169  G4double kinEnergy,
170  G4int Z, G4double A)
171 {
172  G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.),
173  kinEnergy);
174  fTotalXsc = GetIsoCrossSection(aDP, Z, G4int(A));
175  delete aDP;
176 
177  return fProductionXsc;
178 }
179 
181 
183  G4double kinEnergy,
184  G4int Z, G4double A)
185 {
186  G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.),
187  kinEnergy);
188  fTotalXsc = GetIsoCrossSection(aDP, Z, G4int(A));
189  delete aDP;
190 
191  return fElasticXsc;
192 }
193 
195 
197  G4double kinEnergy,
198  G4int Z, G4int A)
199 {
200  G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.),
201  kinEnergy);
202  fTotalXsc = GetIsoCrossSection(aDP, Z, A);
203  delete aDP;
204 
205  return fElasticXsc;
206 }
207 
209 
211  G4double kinEnergy,
212  G4int Z, G4int A)
213 {
214  G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.),
215  kinEnergy);
216  fTotalXsc = GetIsoCrossSection(aDP, Z, A);
217  delete aDP;
218  G4double ratio = 0.;
219 
220  if(fInelasticXsc > 0.)
221  {
223  if(ratio < 0.) ratio = 0.;
224  }
225  return ratio;
226 }
227 
228 
229 
230 
232 
233 G4bool
235  G4int Z, G4int /*A*/,
236  const G4Element*,
237  const G4Material*)
238 {
239  G4bool applicable = false;
240  // G4int baryonNumber = aDP->GetDefinition()->GetBaryonNumber();
241  G4double kineticEnergy = aDP->GetKineticEnergy();
242 
243  const G4ParticleDefinition* theParticle = aDP->GetDefinition();
244 
245  if ( ( kineticEnergy >= fLowerLimit &&
246  // Z > 1 && // >= He
247  ( theParticle == theAProton ||
248  theParticle == theGamma ||
249  theParticle == theSMinus ||
250  theParticle == theProton ||
251  theParticle == theNeutron ||
252  theParticle == thePiPlus ||
253  theParticle == thePiMinus ) &&
254  Z >= 1 && // >= H for kaons
255  (
256  theParticle == theKPlus ||
257  theParticle == theKMinus ||
258  theParticle == theK0L ||
259  theParticle == theK0S
260  ) ) ) applicable = true;
261 
262  return applicable;
263 }
264 
266 //
267 // Calculates total and inelastic Xsc, derives elastic as total - inelastic accordong to
268 // Glauber model with Gribov correction calculated in the dipole approximation on
269 // light cone. Gaussian density of point-like nucleons helps to calculate rest integrals of the model.
270 // [1] B.Z. Kopeliovich, nucl-th/0306044 + simplification above
271 
272 G4double
274  G4int Z, G4int A,
275  const G4Isotope*,
276  const G4Element*,
277  const G4Material*)
278 {
279  G4double xsection, sigma, cofInelastic, cofTotal, nucleusSquare, ratio;
280  G4double hpInXsc(0.), hnInXsc(0.);
281  G4double R = GetNucleusRadius(A);
282 
283  G4int N = A - Z; // number of neutrons
284  if (N < 0) N = 0;
285 
286  const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
287 
288  if( theParticle == theProton ||
289  theParticle == theNeutron ||
290  theParticle == thePiPlus ||
291  theParticle == thePiMinus )
292  {
293  // sigma = GetHadronNucleonXscNS(aParticle, A, Z);
294 
295  sigma = Z*hnXsc->GetHadronNucleonXscNS(aParticle, theProton);
296 
297  hpInXsc = hnXsc->GetInelasticHadronNucleonXsc();
298 
299  sigma += N*hnXsc->GetHadronNucleonXscNS(aParticle, theNeutron);
300 
301  hnInXsc = hnXsc->GetInelasticHadronNucleonXsc();
302 
303  cofInelastic = 2.4;
304  cofTotal = 2.0;
305  }
306  else if( theParticle == theKPlus ||
307  theParticle == theKMinus ||
308  theParticle == theK0S ||
309  theParticle == theK0L )
310  {
311  // sigma = GetKaonNucleonXscVector(aParticle, A, Z);
312 
313  sigma = Z*hnXsc->GetKaonNucleonXscGG(aParticle, theProton);
314 
315  hpInXsc = hnXsc->GetInelasticHadronNucleonXsc();
316 
317  sigma += N*hnXsc->GetKaonNucleonXscGG(aParticle, theNeutron);
318 
319  hnInXsc = hnXsc->GetInelasticHadronNucleonXsc();
320 
321  cofInelastic = 2.2;
322  cofTotal = 2.0;
323  R = 1.3*fermi;
324  R *= std::pow(G4double(A), 0.3333);
325  }
326  else
327  {
328  sigma = GetHadronNucleonXscNS(aParticle, A, Z);
329  cofInelastic = 2.2;
330  cofTotal = 2.0;
331  }
332  // cofInelastic = 2.0;
333 
334  if( A > 1 )
335  {
336  nucleusSquare = cofTotal*pi*R*R; // basically 2piRR
337  ratio = sigma/nucleusSquare;
338 
339  xsection = nucleusSquare*std::log( 1. + ratio );
340 
341  xsection *= GetParticleBarCorTot(theParticle, Z);
342 
343  fTotalXsc = xsection;
344 
345 
346 
347  fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
348 
349  fInelasticXsc *= GetParticleBarCorIn(theParticle, Z);
350 
352 
353  if(fElasticXsc < 0.) fElasticXsc = 0.;
354 
355  G4double difratio = ratio/(1.+ratio);
356 
357  fDiffractionXsc = 0.5*nucleusSquare*( difratio - std::log( 1. + difratio ) );
358 
359 
360  // sigma = GetHNinelasticXsc(aParticle, A, Z);
361 
362  sigma = Z*hpInXsc + N*hnInXsc;
363 
364  ratio = sigma/nucleusSquare;
365 
366  fProductionXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
367 
368  fProductionXsc *= GetParticleBarCorIn(theParticle, Z);
369 
370  if (fElasticXsc < 0.) fElasticXsc = 0.;
371  }
372  else // H
373  {
374  fTotalXsc = sigma;
375  xsection = sigma;
376 
378 
379  if ( theParticle != theAProton )
380  {
382 
383  // sigma = GetHNinelasticXsc(aParticle, A, Z);
384  // fInelasticXsc = sigma;
385  // fElasticXsc = fTotalXsc - fInelasticXsc;
386  }
387  else if( theParticle == theKPlus ||
388  theParticle == theKMinus ||
389  theParticle == theK0S ||
390  theParticle == theK0L )
391  {
392  fInelasticXsc = hpInXsc;
394  }
395  else
396  {
397  fInelasticXsc = hpInXsc;
399  }
400  if (fElasticXsc < 0.) fElasticXsc = 0.;
401 
402  }
403  return xsection;
404 }
405 
407 //
408 // Return single-diffraction/inelastic cross-section ratio
409 
411 GetRatioSD(const G4DynamicParticle* aParticle, G4int A, G4int Z)
412 {
413  G4double sigma, cofInelastic, cofTotal, nucleusSquare, ratio;
414  G4double R = GetNucleusRadius(A);
415 
416  const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
417 
418  if( theParticle == theProton ||
419  theParticle == theNeutron ||
420  theParticle == thePiPlus ||
421  theParticle == thePiMinus )
422  {
423  sigma = GetHadronNucleonXscNS(aParticle, A, Z);
424  cofInelastic = 2.4;
425  cofTotal = 2.0;
426  }
427  else
428  {
429  sigma = GetHadronNucleonXscNS(aParticle, A, Z);
430  cofInelastic = 2.2;
431  cofTotal = 2.0;
432  }
433  nucleusSquare = cofTotal*pi*R*R; // basically 2piRR
434  ratio = sigma/nucleusSquare;
435 
436  fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
437 
438  G4double difratio = ratio/(1.+ratio);
439 
440  fDiffractionXsc = 0.5*nucleusSquare*( difratio - std::log( 1. + difratio ) );
441 
442  if (fInelasticXsc > 0.) ratio = fDiffractionXsc/fInelasticXsc;
443  else ratio = 0.;
444 
445  return ratio;
446 }
447 
449 //
450 // Return suasi-elastic/inelastic cross-section ratio
451 
453 GetRatioQE(const G4DynamicParticle* aParticle, G4int A, G4int Z)
454 {
455  G4double sigma, cofInelastic, cofTotal, nucleusSquare, ratio;
456  G4double R = GetNucleusRadius(A);
457 
458  const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
459 
460  if( theParticle == theProton ||
461  theParticle == theNeutron ||
462  theParticle == thePiPlus ||
463  theParticle == thePiMinus )
464  {
465  sigma = GetHadronNucleonXscNS(aParticle, A, Z);
466  cofInelastic = 2.4;
467  cofTotal = 2.0;
468  }
469  else
470  {
471  sigma = GetHadronNucleonXscNS(aParticle, A, Z);
472  cofInelastic = 2.2;
473  cofTotal = 2.0;
474  }
475  nucleusSquare = cofTotal*pi*R*R; // basically 2piRR
476  ratio = sigma/nucleusSquare;
477 
478  fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
479 
480  sigma = GetHNinelasticXsc(aParticle, A, Z);
481  ratio = sigma/nucleusSquare;
482 
483  fProductionXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
484 
486  else ratio = 0.;
487  if ( ratio < 0. ) ratio = 0.;
488 
489  return ratio;
490 }
491 
493 //
494 // Returns hadron-nucleon Xsc according to differnt parametrisations:
495 // [2] E. Levin, hep-ph/9710546
496 // [3] U. Dersch, et al, hep-ex/9910052
497 // [4] M.J. Longo, et al, Phys.Rev.Lett. 33 (1974) 725
498 
499 G4double
501  const G4Element* anElement)
502 {
503  G4int At = G4lrint(anElement->GetN()); // number of nucleons
504  G4int Zt = G4lrint(anElement->GetZ()); // number of protons
505 
506  return GetHadronNucleonXsc(aParticle, At, Zt);
507 }
508 
510 //
511 // Returns hadron-nucleon Xsc according to differnt parametrisations:
512 // [2] E. Levin, hep-ph/9710546
513 // [3] U. Dersch, et al, hep-ex/9910052
514 // [4] M.J. Longo, et al, Phys.Rev.Lett. 33 (1974) 725
515 
516 G4double
518  G4int At, G4int /*Zt*/)
519 {
520  G4double xsection;
521 
522  //G4double targ_mass = G4NucleiProperties::GetNuclearMass(At, Zt);
523 
524  G4double targ_mass = 0.939*GeV; // ~mean neutron and proton ???
525 
526  G4double proj_mass = aParticle->GetMass();
527  G4double proj_momentum = aParticle->GetMomentum().mag();
528  G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum );
529 
530  sMand /= GeV*GeV; // in GeV for parametrisation
531  proj_momentum /= GeV;
532 
533  const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
534 
535  G4double aa = At;
536 
537  if(theParticle == theGamma)
538  {
539  xsection = aa*(0.0677*std::pow(sMand,0.0808) + 0.129*std::pow(sMand,-0.4525));
540  }
541  else if(theParticle == theNeutron) // as proton ???
542  {
543  xsection = aa*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525));
544  }
545  else if(theParticle == theProton)
546  {
547  xsection = aa*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525));
548  // xsection = At*( 49.51*std::pow(sMand,-0.097) + 0.314*std::log(sMand)*std::log(sMand) );
549  // xsection = At*( 38.4 + 0.85*std::abs(std::pow(log(sMand),1.47)) );
550  }
551  else if(theParticle == theAProton)
552  {
553  xsection = aa*( 21.70*std::pow(sMand,0.0808) + 98.39*std::pow(sMand,-0.4525));
554  }
555  else if(theParticle == thePiPlus)
556  {
557  xsection = aa*(13.63*std::pow(sMand,0.0808) + 27.56*std::pow(sMand,-0.4525));
558  }
559  else if(theParticle == thePiMinus)
560  {
561  // xsection = At*( 55.2*std::pow(sMand,-0.255) + 0.346*std::log(sMand)*std::log(sMand) );
562  xsection = aa*(13.63*std::pow(sMand,0.0808) + 36.02*std::pow(sMand,-0.4525));
563  }
564  else if(theParticle == theKPlus)
565  {
566  xsection = aa*(11.82*std::pow(sMand,0.0808) + 8.15*std::pow(sMand,-0.4525));
567  }
568  else if(theParticle == theKMinus)
569  {
570  xsection = aa*(11.82*std::pow(sMand,0.0808) + 26.36*std::pow(sMand,-0.4525));
571  }
572  else // as proton ???
573  {
574  xsection = aa*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525));
575  }
576  xsection *= millibarn;
577  return xsection;
578 }
579 
580 
582 //
583 // Returns hadron-nucleon Xsc according to PDG parametrisation (2005):
584 // http://pdg.lbl.gov/2006/reviews/hadronicrpp.pdf
585 
586 G4double
588  const G4Element* anElement)
589 {
590  G4int At = G4lrint(anElement->GetN()); // number of nucleons
591  G4int Zt = G4lrint(anElement->GetZ()); // number of protons
592 
593  return GetHadronNucleonXscPDG(aParticle, At, Zt);
594 }
595 
596 
597 
598 
600 //
601 // Returns hadron-nucleon Xsc according to PDG parametrisation (2005):
602 // http://pdg.lbl.gov/2006/reviews/hadronicrpp.pdf
603 // At = number of nucleons, Zt = number of protons
604 
605 G4double
607  G4int At, G4int Zt)
608 {
609  G4double xsection;
610 
611  G4int Nt = At-Zt; // number of neutrons
612  if (Nt < 0) Nt = 0;
613 
614  G4double zz = Zt;
615  G4double aa = At;
616  G4double nn = Nt;
617 
619  GetIonTable()->GetIonMass(Zt, At);
620 
621  targ_mass = 0.939*GeV; // ~mean neutron and proton ???
622 
623  G4double proj_mass = aParticle->GetMass();
624  G4double proj_momentum = aParticle->GetMomentum().mag();
625 
626  G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum );
627 
628  sMand /= GeV*GeV; // in GeV for parametrisation
629 
630  // General PDG fit constants
631 
632  G4double s0 = 5.38*5.38; // in Gev^2
633  G4double eta1 = 0.458;
634  G4double eta2 = 0.458;
635  G4double B = 0.308;
636 
637 
638  const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
639 
640 
641  if(theParticle == theNeutron) // proton-neutron fit
642  {
643  xsection = zz*( 35.80 + B*std::pow(std::log(sMand/s0),2.)
644  + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
645  xsection += nn*( 35.45 + B*std::pow(std::log(sMand/s0),2.)
646  + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2)); // pp for nn
647  }
648  else if(theParticle == theProton)
649  {
650 
651  xsection = zz*( 35.45 + B*std::pow(std::log(sMand/s0),2.)
652  + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2));
653 
654  xsection += nn*( 35.80 + B*std::pow(std::log(sMand/s0),2.)
655  + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
656  }
657  else if(theParticle == theAProton)
658  {
659  xsection = zz*( 35.45 + B*std::pow(std::log(sMand/s0),2.)
660  + 42.53*std::pow(sMand,-eta1) + 33.34*std::pow(sMand,-eta2));
661 
662  xsection += nn*( 35.80 + B*std::pow(std::log(sMand/s0),2.)
663  + 40.15*std::pow(sMand,-eta1) + 30.*std::pow(sMand,-eta2));
664  }
665  else if(theParticle == thePiPlus)
666  {
667  xsection = aa*( 20.86 + B*std::pow(std::log(sMand/s0),2.)
668  + 19.24*std::pow(sMand,-eta1) - 6.03*std::pow(sMand,-eta2));
669  }
670  else if(theParticle == thePiMinus)
671  {
672  xsection = aa*( 20.86 + B*std::pow(std::log(sMand/s0),2.)
673  + 19.24*std::pow(sMand,-eta1) + 6.03*std::pow(sMand,-eta2));
674  }
675  else if(theParticle == theKPlus || theParticle == theK0L )
676  {
677  xsection = zz*( 17.91 + B*std::pow(std::log(sMand/s0),2.)
678  + 7.14*std::pow(sMand,-eta1) - 13.45*std::pow(sMand,-eta2));
679 
680  xsection += nn*( 17.87 + B*std::pow(std::log(sMand/s0),2.)
681  + 5.17*std::pow(sMand,-eta1) - 7.23*std::pow(sMand,-eta2));
682  }
683  else if(theParticle == theKMinus || theParticle == theK0S )
684  {
685  xsection = zz*( 17.91 + B*std::pow(std::log(sMand/s0),2.)
686  + 7.14*std::pow(sMand,-eta1) + 13.45*std::pow(sMand,-eta2));
687 
688  xsection += nn*( 17.87 + B*std::pow(std::log(sMand/s0),2.)
689  + 5.17*std::pow(sMand,-eta1) + 7.23*std::pow(sMand,-eta2));
690  }
691  else if(theParticle == theSMinus)
692  {
693  xsection = aa*( 35.20 + B*std::pow(std::log(sMand/s0),2.)
694  - 199.*std::pow(sMand,-eta1) + 264.*std::pow(sMand,-eta2));
695  }
696  else if(theParticle == theGamma) // modify later on
697  {
698  xsection = aa*( 0.0 + B*std::pow(std::log(sMand/s0),2.)
699  + 0.032*std::pow(sMand,-eta1) - 0.0*std::pow(sMand,-eta2));
700 
701  }
702  else // as proton ???
703  {
704  xsection = zz*( 35.45 + B*std::pow(std::log(sMand/s0),2.)
705  + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2));
706 
707  xsection += nn*( 35.80 + B*std::pow(std::log(sMand/s0),2.)
708  + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
709  }
710  xsection *= millibarn; // parametrised in mb
711  return xsection;
712 }
713 
714 
716 //
717 // Returns hadron-nucleon cross-section based on N. Starkov parametrisation of
718 // data from mainly http://wwwppds.ihep.su:8001/c5-6A.html database
719 
720 G4double
722  const G4Element* anElement)
723 {
724  G4int At = G4lrint(anElement->GetN()); // number of nucleons
725  G4int Zt = G4lrint(anElement->GetZ()); // number of protons
726 
727  return GetHadronNucleonXscNS(aParticle, At, Zt);
728 }
729 
730 
731 
732 
734 //
735 // Returns hadron-nucleon cross-section based on N. Starkov parametrisation of
736 // data from mainly http://wwwppds.ihep.su:8001/c5-6A.html database
737 
738 G4double
740  G4int At, G4int Zt)
741 {
742  G4double xsection(0);
743  // G4double Delta; DHW 19 May 2011: variable set but not used
744  G4double A0, B0;
745  G4double hpXscv(0);
746  G4double hnXscv(0);
747 
748  G4int Nt = At-Zt; // number of neutrons
749  if (Nt < 0) Nt = 0;
750 
751  G4double aa = At;
752  G4double zz = Zt;
753  G4double nn = Nt;
754 
756  GetIonTable()->GetIonMass(Zt, At);
757 
758  targ_mass = 0.939*GeV; // ~mean neutron and proton ???
759 
760  G4double proj_mass = aParticle->GetMass();
761  G4double proj_energy = aParticle->GetTotalEnergy();
762  G4double proj_momentum = aParticle->GetMomentum().mag();
763 
764  G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum );
765 
766  sMand /= GeV*GeV; // in GeV for parametrisation
767  proj_momentum /= GeV;
768  proj_energy /= GeV;
769  proj_mass /= GeV;
770 
771  // General PDG fit constants
772 
773  G4double s0 = 5.38*5.38; // in Gev^2
774  G4double eta1 = 0.458;
775  G4double eta2 = 0.458;
776  G4double B = 0.308;
777 
778 
779  const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
780 
781 
782  if(theParticle == theNeutron)
783  {
784  if( proj_momentum >= 373.)
785  {
786  return GetHadronNucleonXscPDG(aParticle,At,Zt);
787  }
788  else if( proj_momentum >= 10.)
789  // if( proj_momentum >= 2.)
790  {
791  // Delta = 1.; // DHW 19 May 2011: variable set but not used
792  // if( proj_energy < 40. ) Delta = 0.916+0.0021*proj_energy;
793 
794  if(proj_momentum >= 10.)
795  {
796  B0 = 7.5;
797  A0 = 100. - B0*std::log(3.0e7);
798 
799  xsection = A0 + B0*std::log(proj_energy) - 11
800  + 103*std::pow(2*0.93827*proj_energy + proj_mass*proj_mass+
801  0.93827*0.93827,-0.165); // mb
802  }
803  xsection *= zz + nn;
804  }
805  else
806  {
807  // nn to be pp
808 
809  if( proj_momentum < 0.73 )
810  {
811  hnXscv = 23 + 50*( std::pow( std::log(0.73/proj_momentum), 3.5 ) );
812  }
813  else if( proj_momentum < 1.05 )
814  {
815  hnXscv = 23 + 40*(std::log(proj_momentum/0.73))*
816  (std::log(proj_momentum/0.73));
817  }
818  else // if( proj_momentum < 10. )
819  {
820  hnXscv = 39.0+
821  75*(proj_momentum - 1.2)/(std::pow(proj_momentum,3.0) + 0.15);
822  }
823  // pn to be np
824 
825  if( proj_momentum < 0.8 )
826  {
827  hpXscv = 33+30*std::pow(std::log(proj_momentum/1.3),4.0);
828  }
829  else if( proj_momentum < 1.4 )
830  {
831  hpXscv = 33+30*std::pow(std::log(proj_momentum/0.95),2.0);
832  }
833  else // if( proj_momentum < 10. )
834  {
835  hpXscv = 33.3+
836  20.8*(std::pow(proj_momentum,2.0)-1.35)/
837  (std::pow(proj_momentum,2.50)+0.95);
838  }
839  xsection = hpXscv*zz + hnXscv*nn;
840  }
841  }
842  else if(theParticle == theProton)
843  {
844  if( proj_momentum >= 373.)
845  {
846  return GetHadronNucleonXscPDG(aParticle,At,Zt);
847  }
848  else if( proj_momentum >= 10.)
849  // if( proj_momentum >= 2.)
850  {
851  // Delta = 1.; DHW 19 May 2011: variable set but not used
852  // if( proj_energy < 40. ) Delta = 0.916+0.0021*proj_energy;
853 
854  if(proj_momentum >= 10.)
855  {
856  B0 = 7.5;
857  A0 = 100. - B0*std::log(3.0e7);
858 
859  xsection = A0 + B0*std::log(proj_energy) - 11
860  + 103*std::pow(2*0.93827*proj_energy + proj_mass*proj_mass+
861  0.93827*0.93827,-0.165); // mb
862  }
863  xsection *= zz + nn;
864  }
865  else
866  {
867  // pp
868 
869  if( proj_momentum < 0.73 )
870  {
871  hpXscv = 23 + 50*( std::pow( std::log(0.73/proj_momentum), 3.5 ) );
872  }
873  else if( proj_momentum < 1.05 )
874  {
875  hpXscv = 23 + 40*(std::log(proj_momentum/0.73))*
876  (std::log(proj_momentum/0.73));
877  }
878  else // if( proj_momentum < 10. )
879  {
880  hpXscv = 39.0+
881  75*(proj_momentum - 1.2)/(std::pow(proj_momentum,3.0) + 0.15);
882  }
883  // pn to be np
884 
885  if( proj_momentum < 0.8 )
886  {
887  hnXscv = 33+30*std::pow(std::log(proj_momentum/1.3),4.0);
888  }
889  else if( proj_momentum < 1.4 )
890  {
891  hnXscv = 33+30*std::pow(std::log(proj_momentum/0.95),2.0);
892  }
893  else // if( proj_momentum < 10. )
894  {
895  hnXscv = 33.3+
896  20.8*(std::pow(proj_momentum,2.0)-1.35)/
897  (std::pow(proj_momentum,2.50)+0.95);
898  }
899  xsection = hpXscv*zz + hnXscv*nn;
900  // xsection = hpXscv*(Zt + Nt);
901  // xsection = hnXscv*(Zt + Nt);
902  }
903  // xsection *= 0.95;
904  }
905  else if( theParticle == theAProton )
906  {
907  // xsection = Zt*( 35.45 + B*std::pow(std::log(sMand/s0),2.)
908  // + 42.53*std::pow(sMand,-eta1) + 33.34*std::pow(sMand,-eta2));
909 
910  // xsection += Nt*( 35.80 + B*std::pow(std::log(sMand/s0),2.)
911  // + 40.15*std::pow(sMand,-eta1) + 30.*std::pow(sMand,-eta2));
912 
913  G4double logP = std::log(proj_momentum);
914 
915  if( proj_momentum <= 1.0 )
916  {
917  xsection = zz*(65.55 + 53.84/(proj_momentum+1.e-6) );
918  }
919  else
920  {
921  xsection = zz*( 41.1 + 77.2*std::pow( proj_momentum, -0.68)
922  + 0.293*logP*logP - 1.82*logP );
923  }
924  if ( nn > 0.)
925  {
926  xsection += nn*( 41.9 + 96.2*std::pow( proj_momentum, -0.99) - 0.154*logP);
927  }
928  else // H
929  {
930  fInelasticXsc = 38.0 + 38.0*std::pow( proj_momentum, -0.96)
931  - 0.169*logP*logP;
933  }
934  }
935  else if( theParticle == thePiPlus )
936  {
937  if(proj_momentum < 0.4)
938  {
939  G4double Ex3 = 180*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.085/0.085);
940  hpXscv = Ex3+20.0;
941  }
942  else if( proj_momentum < 1.15 )
943  {
944  G4double Ex4 = 88*(std::log(proj_momentum/0.75))*(std::log(proj_momentum/0.75));
945  hpXscv = Ex4+14.0;
946  }
947  else if(proj_momentum < 3.5)
948  {
949  G4double Ex1 = 3.2*std::exp(-(proj_momentum-2.55)*(proj_momentum-2.55)/0.55/0.55);
950  G4double Ex2 = 12*std::exp(-(proj_momentum-1.47)*(proj_momentum-1.47)/0.225/0.225);
951  hpXscv = Ex1+Ex2+27.5;
952  }
953  else // if(proj_momentum > 3.5) // mb
954  {
955  hpXscv = 10.6+2.*std::log(proj_energy)+25*std::pow(proj_energy,-0.43);
956  }
957  // pi+n = pi-p??
958 
959  if(proj_momentum < 0.37)
960  {
961  hnXscv = 28.0 + 40*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.07/0.07);
962  }
963  else if(proj_momentum<0.65)
964  {
965  hnXscv = 26+110*(std::log(proj_momentum/0.48))*(std::log(proj_momentum/0.48));
966  }
967  else if(proj_momentum<1.3)
968  {
969  hnXscv = 36.1+
970  10*std::exp(-(proj_momentum-0.72)*(proj_momentum-0.72)/0.06/0.06)+
971  24*std::exp(-(proj_momentum-1.015)*(proj_momentum-1.015)/0.075/0.075);
972  }
973  else if(proj_momentum<3.0)
974  {
975  hnXscv = 36.1+0.079-4.313*std::log(proj_momentum)+
976  3*std::exp(-(proj_momentum-2.1)*(proj_momentum-2.1)/0.4/0.4)+
977  1.5*std::exp(-(proj_momentum-1.4)*(proj_momentum-1.4)/0.12/0.12);
978  }
979  else // mb
980  {
981  hnXscv = 10.6+2*std::log(proj_energy)+30*std::pow(proj_energy,-0.43);
982  }
983  xsection = hpXscv*zz + hnXscv*nn;
984  }
985  else if(theParticle == thePiMinus)
986  {
987  // pi-n = pi+p??
988 
989  if(proj_momentum < 0.4)
990  {
991  G4double Ex3 = 180*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.085/0.085);
992  hnXscv = Ex3+20.0;
993  }
994  else if(proj_momentum < 1.15)
995  {
996  G4double Ex4 = 88*(std::log(proj_momentum/0.75))*(std::log(proj_momentum/0.75));
997  hnXscv = Ex4+14.0;
998  }
999  else if(proj_momentum < 3.5)
1000  {
1001  G4double Ex1 = 3.2*std::exp(-(proj_momentum-2.55)*(proj_momentum-2.55)/0.55/0.55);
1002  G4double Ex2 = 12*std::exp(-(proj_momentum-1.47)*(proj_momentum-1.47)/0.225/0.225);
1003  hnXscv = Ex1+Ex2+27.5;
1004  }
1005  else // if(proj_momentum > 3.5) // mb
1006  {
1007  hnXscv = 10.6+2.*std::log(proj_energy)+25*std::pow(proj_energy,-0.43);
1008  }
1009  // pi-p
1010 
1011  if(proj_momentum < 0.37)
1012  {
1013  hpXscv = 28.0 + 40*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.07/0.07);
1014  }
1015  else if(proj_momentum<0.65)
1016  {
1017  hpXscv = 26+110*(std::log(proj_momentum/0.48))*(std::log(proj_momentum/0.48));
1018  }
1019  else if(proj_momentum<1.3)
1020  {
1021  hpXscv = 36.1+
1022  10*std::exp(-(proj_momentum-0.72)*(proj_momentum-0.72)/0.06/0.06)+
1023  24*std::exp(-(proj_momentum-1.015)*(proj_momentum-1.015)/0.075/0.075);
1024  }
1025  else if(proj_momentum<3.0)
1026  {
1027  hpXscv = 36.1+0.079-4.313*std::log(proj_momentum)+
1028  3*std::exp(-(proj_momentum-2.1)*(proj_momentum-2.1)/0.4/0.4)+
1029  1.5*std::exp(-(proj_momentum-1.4)*(proj_momentum-1.4)/0.12/0.12);
1030  }
1031  else // mb
1032  {
1033  hpXscv = 10.6+2*std::log(proj_energy)+30*std::pow(proj_energy,-0.43);
1034  }
1035  xsection = hpXscv*zz + hnXscv*nn;
1036  }
1037  else if(theParticle == theKPlus)
1038  {
1039  xsection = zz*( 17.91 + B*std::pow(std::log(sMand/s0),2.)
1040  + 7.14*std::pow(sMand,-eta1) - 13.45*std::pow(sMand,-eta2));
1041 
1042  xsection += nn*( 17.87 + B*std::pow(std::log(sMand/s0),2.)
1043  + 5.17*std::pow(sMand,-eta1) - 7.23*std::pow(sMand,-eta2));
1044  }
1045  else if(theParticle == theKMinus)
1046  {
1047  xsection = zz*( 17.91 + B*std::pow(std::log(sMand/s0),2.)
1048  + 7.14*std::pow(sMand,-eta1) + 13.45*std::pow(sMand,-eta2));
1049 
1050  xsection += nn*( 17.87 + B*std::pow(std::log(sMand/s0),2.)
1051  + 5.17*std::pow(sMand,-eta1) + 7.23*std::pow(sMand,-eta2));
1052  }
1053  else if(theParticle == theSMinus)
1054  {
1055  xsection = aa*( 35.20 + B*std::pow(std::log(sMand/s0),2.)
1056  - 199.*std::pow(sMand,-eta1) + 264.*std::pow(sMand,-eta2));
1057  }
1058  else if(theParticle == theGamma) // modify later on
1059  {
1060  xsection = aa*( 0.0 + B*std::pow(std::log(sMand/s0),2.)
1061  + 0.032*std::pow(sMand,-eta1) - 0.0*std::pow(sMand,-eta2));
1062 
1063  }
1064  else // as proton ???
1065  {
1066  xsection = zz*( 35.45 + B*std::pow(std::log(sMand/s0),2.)
1067  + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2));
1068 
1069  xsection += nn*( 35.80 + B*std::pow(std::log(sMand/s0),2.)
1070  + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
1071  }
1072  xsection *= millibarn; // parametrised in mb
1073  return xsection;
1074 }
1075 
1076 G4double
1078  G4int At, G4int Zt)
1079 {
1080  G4double Tkin, logTkin, xsc, xscP, xscN;
1081  const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
1082 
1083  G4int Nt = At-Zt; // number of neutrons
1084  if (Nt < 0) Nt = 0;
1085 
1086  Tkin = aParticle->GetKineticEnergy(); // Tkin in MeV
1087 
1088  if( Tkin > 70*GeV ) return GetHadronNucleonXscPDG(aParticle,At,Zt);
1089 
1090  logTkin = std::log(Tkin); // Tkin in MeV!!!
1091 
1092  if( theParticle == theKPlus )
1093  {
1094  xscP = hnXsc->GetKpProtonTotXscVector(logTkin);
1095  xscN = hnXsc->GetKpNeutronTotXscVector(logTkin);
1096  }
1097  else if( theParticle == theKMinus )
1098  {
1099  xscP = hnXsc->GetKmProtonTotXscVector(logTkin);
1100  xscN = hnXsc->GetKmNeutronTotXscVector(logTkin);
1101  }
1102  else // K-zero as half of K+ and K-
1103  {
1104  xscP = (hnXsc->GetKpProtonTotXscVector(logTkin)+hnXsc->GetKmProtonTotXscVector(logTkin))*0.5;
1105  xscN = (hnXsc->GetKpNeutronTotXscVector(logTkin)+hnXsc->GetKmNeutronTotXscVector(logTkin))*0.5;
1106  }
1107  xsc = xscP*Zt + xscN*Nt;
1108  return xsc;
1109 }
1111 //
1112 // Returns hadron-nucleon inelastic cross-section based on proper parametrisation
1113 
1114 G4double
1116  const G4Element* anElement)
1117 {
1118  G4int At = G4lrint(anElement->GetN()); // number of nucleons
1119  G4int Zt = G4lrint(anElement->GetZ()); // number of protons
1120 
1121  return GetHNinelasticXsc(aParticle, At, Zt);
1122 }
1123 
1125 //
1126 // Returns hadron-nucleon inelastic cross-section based on FTF-parametrisation
1127 
1128 G4double
1130  G4int At, G4int Zt)
1131 {
1132  const G4ParticleDefinition* hadron = aParticle->GetDefinition();
1133  G4double sumInelastic;
1134  G4int Nt = At - Zt;
1135  if(Nt < 0) Nt = 0;
1136 
1137  if( hadron == theKPlus )
1138  {
1139  sumInelastic = GetHNinelasticXscVU(aParticle, At, Zt);
1140  }
1141  else
1142  {
1143  //sumInelastic = Zt*GetHadronNucleonXscMK(aParticle, theProton);
1144  // sumInelastic += Nt*GetHadronNucleonXscMK(aParticle, theNeutron);
1145  sumInelastic = G4double(Zt)*GetHadronNucleonXscNS(aParticle, 1, 1);
1146  sumInelastic += G4double(Nt)*GetHadronNucleonXscNS(aParticle, 1, 0);
1147  }
1148  return sumInelastic;
1149 }
1150 
1151 
1153 //
1154 // Returns hadron-nucleon inelastic cross-section based on FTF-parametrisation
1155 
1156 G4double
1158  G4int At, G4int Zt)
1159 {
1160  G4int PDGcode = aParticle->GetDefinition()->GetPDGEncoding();
1161  G4int absPDGcode = std::abs(PDGcode);
1162 
1163  G4double Elab = aParticle->GetTotalEnergy();
1164  // (s - 2*0.88*GeV*GeV)/(2*0.939*GeV)/GeV;
1165  G4double Plab = aParticle->GetMomentum().mag();
1166  // std::sqrt(Elab * Elab - 0.88);
1167 
1168  Elab /= GeV;
1169  Plab /= GeV;
1170 
1171  G4double LogPlab = std::log( Plab );
1172  G4double sqrLogPlab = LogPlab * LogPlab;
1173 
1174  //G4cout<<"Plab = "<<Plab<<G4endl;
1175 
1176  G4double NumberOfTargetProtons = G4double(Zt);
1177  G4double NumberOfTargetNucleons = G4double(At);
1178  G4double NumberOfTargetNeutrons = NumberOfTargetNucleons - NumberOfTargetProtons;
1179 
1180  if(NumberOfTargetNeutrons < 0.0) NumberOfTargetNeutrons = 0.0;
1181 
1182  G4double Xtotal, Xelastic, Xinelastic;
1183 
1184  if( absPDGcode > 1000 ) //------Projectile is baryon --------
1185  {
1186  G4double XtotPP = 48.0 + 0. *std::pow(Plab, 0. ) +
1187  0.522*sqrLogPlab - 4.51*LogPlab;
1188 
1189  G4double XtotPN = 47.3 + 0. *std::pow(Plab, 0. ) +
1190  0.513*sqrLogPlab - 4.27*LogPlab;
1191 
1192  G4double XelPP = 11.9 + 26.9*std::pow(Plab,-1.21) +
1193  0.169*sqrLogPlab - 1.85*LogPlab;
1194 
1195  G4double XelPN = 11.9 + 26.9*std::pow(Plab,-1.21) +
1196  0.169*sqrLogPlab - 1.85*LogPlab;
1197 
1198  Xtotal = (NumberOfTargetProtons * XtotPP +
1199  NumberOfTargetNeutrons * XtotPN);
1200 
1201  Xelastic = (NumberOfTargetProtons * XelPP +
1202  NumberOfTargetNeutrons * XelPN);
1203  }
1204  else if( PDGcode == 211 ) //------Projectile is PionPlus -------
1205  {
1206  G4double XtotPiP = 16.4 + 19.3 *std::pow(Plab,-0.42) +
1207  0.19 *sqrLogPlab - 0.0 *LogPlab;
1208 
1209  G4double XtotPiN = 33.0 + 14.0 *std::pow(Plab,-1.36) +
1210  0.456*sqrLogPlab - 4.03*LogPlab;
1211 
1212  G4double XelPiP = 0.0 + 11.4*std::pow(Plab,-0.40) +
1213  0.079*sqrLogPlab - 0.0 *LogPlab;
1214 
1215  G4double XelPiN = 1.76 + 11.2*std::pow(Plab,-0.64) +
1216  0.043*sqrLogPlab - 0.0 *LogPlab;
1217 
1218  Xtotal = ( NumberOfTargetProtons * XtotPiP +
1219  NumberOfTargetNeutrons * XtotPiN );
1220 
1221  Xelastic = ( NumberOfTargetProtons * XelPiP +
1222  NumberOfTargetNeutrons * XelPiN );
1223  }
1224  else if( PDGcode == -211 ) //------Projectile is PionMinus -------
1225  {
1226  G4double XtotPiP = 33.0 + 14.0 *std::pow(Plab,-1.36) +
1227  0.456*sqrLogPlab - 4.03*LogPlab;
1228 
1229  G4double XtotPiN = 16.4 + 19.3 *std::pow(Plab,-0.42) +
1230  0.19 *sqrLogPlab - 0.0 *LogPlab;
1231 
1232  G4double XelPiP = 1.76 + 11.2*std::pow(Plab,-0.64) +
1233  0.043*sqrLogPlab - 0.0 *LogPlab;
1234 
1235  G4double XelPiN = 0.0 + 11.4*std::pow(Plab,-0.40) +
1236  0.079*sqrLogPlab - 0.0 *LogPlab;
1237 
1238  Xtotal = ( NumberOfTargetProtons * XtotPiP +
1239  NumberOfTargetNeutrons * XtotPiN );
1240 
1241  Xelastic = ( NumberOfTargetProtons * XelPiP +
1242  NumberOfTargetNeutrons * XelPiN );
1243  }
1244  else if( PDGcode == 111 ) //------Projectile is PionZero -------
1245  {
1246  G4double XtotPiP =(16.4 + 19.3 *std::pow(Plab,-0.42) +
1247  0.19 *sqrLogPlab - 0.0 *LogPlab + //Pi+
1248  33.0 + 14.0 *std::pow(Plab,-1.36) +
1249  0.456*sqrLogPlab - 4.03*LogPlab)/2; //Pi-
1250 
1251  G4double XtotPiN =(33.0 + 14.0 *std::pow(Plab,-1.36) +
1252  0.456*sqrLogPlab - 4.03*LogPlab + //Pi+
1253  16.4 + 19.3 *std::pow(Plab,-0.42) +
1254  0.19 *sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
1255 
1256  G4double XelPiP =( 0.0 + 11.4*std::pow(Plab,-0.40) +
1257  0.079*sqrLogPlab - 0.0 *LogPlab + //Pi+
1258  1.76 + 11.2*std::pow(Plab,-0.64) +
1259  0.043*sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
1260 
1261  G4double XelPiN =( 1.76 + 11.2*std::pow(Plab,-0.64) +
1262  0.043*sqrLogPlab - 0.0 *LogPlab + //Pi+
1263  0.0 + 11.4*std::pow(Plab,-0.40) +
1264  0.079*sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
1265 
1266  Xtotal = ( NumberOfTargetProtons * XtotPiP +
1267  NumberOfTargetNeutrons * XtotPiN );
1268 
1269  Xelastic = ( NumberOfTargetProtons * XelPiP +
1270  NumberOfTargetNeutrons * XelPiN );
1271  }
1272  else if( PDGcode == 321 ) //------Projectile is KaonPlus -------
1273  {
1274  G4double XtotKP = 18.1 + 0. *std::pow(Plab, 0. ) +
1275  0.26 *sqrLogPlab - 1.0 *LogPlab;
1276  G4double XtotKN = 18.7 + 0. *std::pow(Plab, 0. ) +
1277  0.21 *sqrLogPlab - 0.89*LogPlab;
1278 
1279  G4double XelKP = 5.0 + 8.1*std::pow(Plab,-1.8 ) +
1280  0.16 *sqrLogPlab - 1.3 *LogPlab;
1281 
1282  G4double XelKN = 7.3 + 0. *std::pow(Plab,-0. ) +
1283  0.29 *sqrLogPlab - 2.4 *LogPlab;
1284 
1285  Xtotal = ( NumberOfTargetProtons * XtotKP +
1286  NumberOfTargetNeutrons * XtotKN );
1287 
1288  Xelastic = ( NumberOfTargetProtons * XelKP +
1289  NumberOfTargetNeutrons * XelKN );
1290  }
1291  else if( PDGcode ==-321 ) //------Projectile is KaonMinus ------
1292  {
1293  G4double XtotKP = 32.1 + 0. *std::pow(Plab, 0. ) +
1294  0.66 *sqrLogPlab - 5.6 *LogPlab;
1295  G4double XtotKN = 25.2 + 0. *std::pow(Plab, 0. ) +
1296  0.38 *sqrLogPlab - 2.9 *LogPlab;
1297 
1298  G4double XelKP = 7.3 + 0. *std::pow(Plab,-0. ) +
1299  0.29 *sqrLogPlab - 2.4 *LogPlab;
1300 
1301  G4double XelKN = 5.0 + 8.1*std::pow(Plab,-1.8 ) +
1302  0.16 *sqrLogPlab - 1.3 *LogPlab;
1303 
1304  Xtotal = ( NumberOfTargetProtons * XtotKP +
1305  NumberOfTargetNeutrons * XtotKN );
1306 
1307  Xelastic = ( NumberOfTargetProtons * XelKP +
1308  NumberOfTargetNeutrons * XelKN );
1309  }
1310  else if( PDGcode == 311 ) //------Projectile is KaonZero ------
1311  {
1312  G4double XtotKP = ( 18.1 + 0. *std::pow(Plab, 0. ) +
1313  0.26 *sqrLogPlab - 1.0 *LogPlab + //K+
1314  32.1 + 0. *std::pow(Plab, 0. ) +
1315  0.66 *sqrLogPlab - 5.6 *LogPlab)/2; //K-
1316 
1317  G4double XtotKN = ( 18.7 + 0. *std::pow(Plab, 0. ) +
1318  0.21 *sqrLogPlab - 0.89*LogPlab + //K+
1319  25.2 + 0. *std::pow(Plab, 0. ) +
1320  0.38 *sqrLogPlab - 2.9 *LogPlab)/2; //K-
1321 
1322  G4double XelKP = ( 5.0 + 8.1*std::pow(Plab,-1.8 )
1323  + 0.16 *sqrLogPlab - 1.3 *LogPlab + //K+
1324  7.3 + 0. *std::pow(Plab,-0. ) +
1325  0.29 *sqrLogPlab - 2.4 *LogPlab)/2; //K-
1326 
1327  G4double XelKN = ( 7.3 + 0. *std::pow(Plab,-0. ) +
1328  0.29 *sqrLogPlab - 2.4 *LogPlab + //K+
1329  5.0 + 8.1*std::pow(Plab,-1.8 ) +
1330  0.16 *sqrLogPlab - 1.3 *LogPlab)/2; //K-
1331 
1332  Xtotal = ( NumberOfTargetProtons * XtotKP +
1333  NumberOfTargetNeutrons * XtotKN );
1334 
1335  Xelastic = ( NumberOfTargetProtons * XelKP +
1336  NumberOfTargetNeutrons * XelKN );
1337  }
1338  else //------Projectile is undefined, Nucleon assumed
1339  {
1340  G4double XtotPP = 48.0 + 0. *std::pow(Plab, 0. ) +
1341  0.522*sqrLogPlab - 4.51*LogPlab;
1342 
1343  G4double XtotPN = 47.3 + 0. *std::pow(Plab, 0. ) +
1344  0.513*sqrLogPlab - 4.27*LogPlab;
1345 
1346  G4double XelPP = 11.9 + 26.9*std::pow(Plab,-1.21) +
1347  0.169*sqrLogPlab - 1.85*LogPlab;
1348  G4double XelPN = 11.9 + 26.9*std::pow(Plab,-1.21) +
1349  0.169*sqrLogPlab - 1.85*LogPlab;
1350 
1351  Xtotal = ( NumberOfTargetProtons * XtotPP +
1352  NumberOfTargetNeutrons * XtotPN );
1353 
1354  Xelastic = ( NumberOfTargetProtons * XelPP +
1355  NumberOfTargetNeutrons * XelPN );
1356  }
1357  Xinelastic = Xtotal - Xelastic;
1358 
1359  if( Xinelastic < 0.) Xinelastic = 0.;
1360 
1361  return Xinelastic*= millibarn;
1362 }
1363 
1365 //
1366 //
1367 
1368 G4double
1370  const G4Element* anElement)
1371 {
1372  G4int At = G4lrint(anElement->GetN());
1373  G4double oneThird = 1.0/3.0;
1374  G4double cubicrAt = std::pow(G4double(At), oneThird);
1375 
1376  G4double R; // = fRadiusConst*cubicrAt;
1377  /*
1378  G4double tmp = std::pow( cubicrAt-1., 3.);
1379  tmp += At;
1380  tmp *= 0.5;
1381 
1382  if (At > 20.) // 20.
1383  {
1384  R = fRadiusConst*std::pow (tmp, oneThird);
1385  }
1386  else
1387  {
1388  R = fRadiusConst*cubicrAt;
1389  }
1390  */
1391 
1392  R = fRadiusConst*cubicrAt;
1393 
1394  G4double meanA = 21.;
1395 
1396  G4double tauA1 = 40.;
1397  G4double tauA2 = 10.;
1398  G4double tauA3 = 5.;
1399 
1400  G4double a1 = 0.85;
1401  G4double b1 = 1. - a1;
1402 
1403  G4double b2 = 0.3;
1404  G4double b3 = 4.;
1405 
1406  if (At > 20) // 20.
1407  {
1408  R *= ( a1 + b1*std::exp( -(At - meanA)/tauA1) );
1409  }
1410  else if (At > 3)
1411  {
1412  R *= ( 1.0 + b2*( 1. - std::exp( (At - meanA)/tauA2) ) );
1413  }
1414  else
1415  {
1416  R *= ( 1.0 + b3*( 1. - std::exp( (At - meanA)/tauA3) ) );
1417  }
1418  return R;
1419 
1420 }
1422 //
1423 //
1424 
1425 G4double
1427 {
1428  G4double oneThird = 1.0/3.0;
1429  G4double cubicrAt = std::pow(G4double(At), oneThird);
1430 
1431  G4double R; // = fRadiusConst*cubicrAt;
1432 
1433  /*
1434  G4double tmp = std::pow( cubicrAt-1., 3.);
1435  tmp += At;
1436  tmp *= 0.5;
1437 
1438  if (At > 20.)
1439  {
1440  R = fRadiusConst*std::pow (tmp, oneThird);
1441  }
1442  else
1443  {
1444  R = fRadiusConst*cubicrAt;
1445  }
1446  */
1447 
1448  R = fRadiusConst*cubicrAt;
1449 
1450  G4double meanA = 20.;
1451  G4double tauA = 20.;
1452 
1453  if (At > 20) // 20.
1454  {
1455  R *= ( 0.8 + 0.2*std::exp( -(G4double(At) - meanA)/tauA) );
1456  }
1457  else
1458  {
1459  R *= ( 1.0 + 0.1*( 1. - std::exp( (G4double(At) - meanA)/tauA) ) );
1460  }
1461 
1462  return R;
1463 }
1464 
1466 //
1467 //
1468 
1470  const G4double mt ,
1471  const G4double Plab )
1472 {
1473  G4double Elab = std::sqrt ( mp * mp + Plab * Plab );
1474  G4double Ecm = std::sqrt ( mp * mp + mt * mt + 2 * Elab * mt );
1475  // G4double Pcm = Plab * mt / Ecm;
1476  // G4double KEcm = std::sqrt ( Pcm * Pcm + mp * mp ) - mp;
1477 
1478  return Ecm ; // KEcm;
1479 }
1480 
1482 //
1483 //
1484 
1486  const G4double mt ,
1487  const G4double Plab )
1488 {
1489  G4double Elab = std::sqrt ( mp * mp + Plab * Plab );
1490  G4double sMand = mp*mp + mt*mt + 2*Elab*mt ;
1491 
1492  return sMand;
1493 }
1494 
1496 //
1497 //
1498 
1500 {
1501  outFile << "G4ComponentGGHadronNucleusXsc calculates total, inelastic and\n"
1502  << "elastic cross sections for hadron-nucleus cross sections using\n"
1503  << "the Glauber model with Gribov corrections. It is valid for all\n"
1504  << "targets except hydrogen, and for incident p, pbar, n, sigma-,\n"
1505  << "pi+, pi-, K+, K- and gammas with energies above 3 GeV. This is\n"
1506  << "a cross section component which is to be used to build a cross\n"
1507  << "data set.\n";
1508 }
1509 
1510 
1512 //
1513 // Correction arrays for GG <-> Bar changea at ~ 90 GeV
1514 
1516 
1517  1.0, 1.0, 1.42517e+00, // 1.118517e+00,
1518 1.082002e+00, 1.116171e+00, 1.078747e+00, 1.061315e+00,
1519 1.058205e+00, 1.082663e+00, 1.068500e+00, 1.076912e+00, 1.083475e+00, 1.079117e+00,
1520 1.071856e+00, 1.071990e+00, 1.073774e+00, 1.079356e+00, 1.081314e+00, 1.082056e+00,
1521 1.090772e+00, 1.096776e+00, 1.095828e+00, 1.097678e+00, 1.099157e+00, 1.103677e+00,
1522 1.105132e+00, 1.109806e+00, 1.110816e+00, 1.117378e+00, 1.115165e+00, 1.115710e+00,
1523 1.111855e+00, 1.110482e+00, 1.110112e+00, 1.106676e+00, 1.108706e+00, 1.105549e+00,
1524 1.106318e+00, 1.106242e+00, 1.107672e+00, 1.107342e+00, 1.108119e+00, 1.106655e+00,
1525 1.102588e+00, 1.096657e+00, 1.092920e+00, 1.086629e+00, 1.083592e+00, 1.076030e+00,
1526 1.083777e+00, 1.089460e+00, 1.086545e+00, 1.079924e+00, 1.082218e+00, 1.077798e+00,
1527 1.077062e+00, 1.072825e+00, 1.072241e+00, 1.072104e+00, 1.072490e+00, 1.069829e+00,
1528 1.070398e+00, 1.065458e+00, 1.064968e+00, 1.060524e+00, 1.060048e+00, 1.057620e+00,
1529 1.056428e+00, 1.055366e+00, 1.055017e+00, 1.052304e+00, 1.051767e+00, 1.049728e+00,
1530 1.048745e+00, 1.047399e+00, 1.045876e+00, 1.042972e+00, 1.041824e+00, 1.039993e+00,
1531 1.039021e+00, 1.036627e+00, 1.034176e+00, 1.032526e+00, 1.033633e+00, 1.036107e+00,
1532 1.037803e+00, 1.031266e+00, 1.032991e+00, 1.033284e+00, 1.035015e+00, 1.033945e+00,
1533 1.037075e+00, 1.034721e+00
1534 
1535 };
1536 
1538 
1539 1.0, 1.0, 1.167421e+00, 1.156250e+00, 1.205364e+00, 1.154225e+00, 1.120391e+00, // 6
1540 1.124632e+00, 1.129460e+00, 1.107863e+00, 1.102152e+00, 1.104593e+00, 1.100285e+00, // 12
1541 1.098450e+00, 1.092677e+00, 1.101124e+00, 1.106461e+00, 1.115049e+00, 1.123903e+00, // 18
1542 1.126661e+00, 1.131259e+00, 1.133949e+00, 1.134185e+00, 1.133767e+00, 1.132813e+00, // 24
1543 1.131515e+00, 1.144338e+00, // 1.130338e+00,
1544 1.134171e+00, 1.139206e+00, 1.148474e+00, // 1.141474e+00,
1545 1.142189e+00,
1546 1.140725e+00, 1.140100e+00, 1.139848e+00, 1.137674e+00, 1.138645e+00, 1.136339e+00,
1547 1.136439e+00, 1.135946e+00, 1.136431e+00, 1.135702e+00, 1.135703e+00, 1.134113e+00,
1548 1.131935e+00, 1.128381e+00, 1.126373e+00, 1.122453e+00, 1.120908e+00, 1.115953e+00,
1549 1.115947e+00, 1.114426e+00, 1.111749e+00, 1.106207e+00, 1.107494e+00, 1.103622e+00,
1550 1.102576e+00, 1.098816e+00, 1.097889e+00, 1.097306e+00, 1.097130e+00, 1.094578e+00,
1551 1.094552e+00, 1.090222e+00, 1.089358e+00, 1.085409e+00, 1.084560e+00, 1.082182e+00,
1552 1.080773e+00, 1.079464e+00, 1.078724e+00, 1.076121e+00, 1.075235e+00, 1.073159e+00,
1553 1.071920e+00, 1.070395e+00, 1.069503e+00, 1.067525e+00, 1.066919e+00, 1.065779e+00,
1554 1.065319e+00, 1.063730e+00, 1.062092e+00, 1.061085e+00, 1.059908e+00, 1.059815e+00,
1555 1.059109e+00, 1.051920e+00, 1.051258e+00, 1.049473e+00, 1.048823e+00, 1.045984e+00,
1556 1.046435e+00, 1.042614e+00
1557 
1558 };
1559 
1561 
1562 1.0, 1.0,
1563 1.118515e+00, 1.082000e+00, 1.116169e+00, 1.078745e+00, 1.061313e+00, 1.058203e+00,
1564 1.082661e+00, 1.068498e+00, 1.076910e+00, 1.083474e+00, 1.079115e+00, 1.071854e+00,
1565 1.071988e+00, 1.073772e+00, 1.079355e+00, 1.081312e+00, 1.082054e+00, 1.090770e+00,
1566 1.096774e+00, 1.095827e+00, 1.097677e+00, 1.099156e+00, 1.103676e+00, 1.105130e+00,
1567 1.109805e+00, 1.110814e+00, 1.117377e+00, 1.115163e+00, 1.115708e+00, 1.111853e+00,
1568 1.110480e+00, 1.110111e+00, 1.106674e+00, 1.108705e+00, 1.105548e+00, 1.106317e+00,
1569 1.106241e+00, 1.107671e+00, 1.107341e+00, 1.108118e+00, 1.106654e+00, 1.102586e+00,
1570 1.096655e+00, 1.092918e+00, 1.086628e+00, 1.083590e+00, 1.076028e+00, 1.083776e+00,
1571 1.089458e+00, 1.086543e+00, 1.079923e+00, 1.082216e+00, 1.077797e+00, 1.077061e+00,
1572 1.072824e+00, 1.072239e+00, 1.072103e+00, 1.072488e+00, 1.069828e+00, 1.070396e+00,
1573 1.065456e+00, 1.064966e+00, 1.060523e+00, 1.060047e+00, 1.057618e+00, 1.056427e+00,
1574 1.055365e+00, 1.055016e+00, 1.052303e+00, 1.051766e+00, 1.049727e+00, 1.048743e+00,
1575 1.047397e+00, 1.045875e+00, 1.042971e+00, 1.041823e+00, 1.039992e+00, 1.039019e+00,
1576 1.036626e+00, 1.034175e+00, 1.032525e+00, 1.033632e+00, 1.036106e+00, 1.037802e+00,
1577 1.031265e+00, 1.032990e+00, 1.033283e+00, 1.035014e+00, 1.033944e+00, 1.037074e+00,
1578 1.034720e+00
1579 
1580 };
1581 
1583 
1584 1.0, 1.0,
1585 1.147419e+00, // 1.167419e+00,
1586 1.156248e+00, 1.205362e+00, 1.154224e+00, 1.120390e+00, 1.124630e+00, // 7
1587 1.129459e+00, 1.107861e+00, 1.102151e+00, 1.104591e+00, 1.100284e+00, 1.098449e+00, // 13
1588 1.092675e+00, 1.101122e+00, 1.106460e+00, 1.115048e+00, 1.123902e+00, 1.126659e+00, // 19
1589 1.131258e+00, 1.133948e+00, 1.134183e+00, 1.133766e+00, 1.132812e+00, 1.131514e+00, // 25
1590 1.140337e+00, // 1.130337e+00,
1591 
1592 1.134170e+00, 1.139205e+00, 1.151472e+00, // 1.141472e+00,
1593 1.142188e+00, 1.140724e+00,
1594 1.140099e+00, 1.139847e+00, 1.137672e+00, 1.138644e+00, 1.136338e+00, 1.136438e+00,
1595 1.135945e+00, 1.136429e+00, 1.135701e+00, 1.135702e+00, 1.134112e+00, 1.131934e+00,
1596 1.128380e+00, 1.126371e+00, 1.122452e+00, 1.120907e+00, 1.115952e+00, 1.115946e+00,
1597 1.114425e+00, 1.111748e+00, 1.106205e+00, 1.107493e+00, 1.103621e+00, 1.102575e+00,
1598 1.098815e+00, 1.097888e+00, 1.097305e+00, 1.097129e+00, 1.094577e+00, 1.094551e+00,
1599 1.090221e+00, 1.089357e+00, 1.085408e+00, 1.084559e+00, 1.082181e+00, 1.080772e+00,
1600 1.079463e+00, 1.078723e+00, 1.076120e+00, 1.075234e+00, 1.073158e+00, 1.071919e+00,
1601 1.070394e+00, 1.069502e+00, 1.067524e+00, 1.066918e+00, 1.065778e+00, 1.065318e+00,
1602 1.063729e+00, 1.062091e+00, 1.061084e+00, 1.059907e+00, 1.059814e+00, 1.059108e+00,
1603 1.051919e+00, 1.051257e+00, 1.049472e+00, 1.048822e+00, 1.045983e+00, 1.046434e+00,
1604 1.042613e+00
1605 
1606 };
1607 
1608 
1610 
1611 1.0, 1.0,
1612 1.075927e+00, 1.074407e+00, 1.126098e+00, 1.100127e+00, 1.089742e+00, 1.083536e+00,
1613 1.089988e+00, 1.103566e+00, 1.096922e+00, 1.126573e+00, 1.132734e+00, 1.136512e+00,
1614 1.136629e+00, 1.133086e+00, 1.132428e+00, 1.129299e+00, 1.125622e+00, 1.126992e+00,
1615 1.127840e+00, 1.162670e+00, 1.160392e+00, 1.157864e+00, 1.157227e+00, 1.154627e+00,
1616 1.192555e+00, 1.197243e+00, 1.197911e+00, 1.200326e+00, 1.220053e+00, 1.215019e+00,
1617 1.211703e+00, 1.209080e+00, 1.204248e+00, 1.203328e+00, 1.198671e+00, 1.196840e+00,
1618 1.194392e+00, 1.193037e+00, 1.190408e+00, 1.188583e+00, 1.206127e+00, 1.210028e+00,
1619 1.206434e+00, 1.204456e+00, 1.200547e+00, 1.199058e+00, 1.200174e+00, 1.200276e+00,
1620 1.198912e+00, 1.213048e+00, 1.207160e+00, 1.208020e+00, 1.203814e+00, 1.202380e+00,
1621 1.198306e+00, 1.197002e+00, 1.196027e+00, 1.195449e+00, 1.192563e+00, 1.192135e+00,
1622 1.187556e+00, 1.186308e+00, 1.182124e+00, 1.180900e+00, 1.178224e+00, 1.176471e+00,
1623 1.174811e+00, 1.173702e+00, 1.170827e+00, 1.169581e+00, 1.167205e+00, 1.165626e+00,
1624 1.180244e+00, 1.177626e+00, 1.175121e+00, 1.173903e+00, 1.172192e+00, 1.171128e+00,
1625 1.168997e+00, 1.166826e+00, 1.164130e+00, 1.165412e+00, 1.165504e+00, 1.165020e+00,
1626 1.158462e+00, 1.158014e+00, 1.156519e+00, 1.156081e+00, 1.153602e+00, 1.154190e+00,
1627 1.152974e+00
1628 
1629 };
1630 
1632 
1633 1.0, 1.0,
1634 1.140246e+00, 1.097872e+00, 1.104301e+00, 1.068722e+00, 1.056495e+00, 1.062622e+00, // 7
1635 1.047987e+00, 1.037032e+00, 1.035686e+00, 1.042870e+00, 1.052222e+00, 1.075100e+00, // 13
1636 1.084480e+00, 1.078286e+00, 1.081488e+00, 1.089713e+00, 1.099105e+00, 1.098003e+00, // 19
1637 1.102175e+00, 1.117707e+00, 1.121734e+00, 1.125229e+00, 1.126457e+00, 1.128905e+00, // 25
1638 1.163312e+00, 1.126263e+00, 1.126459e+00, 1.135191e+00, 1.116986e+00, 1.117184e+00, // 31
1639 1.117037e+00, 1.116777e+00, 1.115858e+00, 1.115745e+00, 1.114489e+00, 1.113993e+00, // 37
1640 1.113226e+00, 1.112818e+00, 1.111890e+00, 1.111238e+00, 1.111209e+00, 1.111775e+00, // 43
1641 1.110256e+00, 1.109414e+00, 1.107647e+00, 1.106980e+00, 1.106096e+00, 1.107331e+00, // 49
1642 1.107849e+00, 1.106407e+00, 1.103426e+00, 1.103896e+00, 1.101756e+00, 1.101031e+00, // 55
1643 1.098915e+00, 1.098260e+00, 1.097768e+00, 1.097487e+00, 1.095964e+00, 1.095773e+00, // 61
1644 1.093348e+00, 1.092687e+00, 1.090465e+00, 1.089821e+00, 1.088394e+00, 1.087462e+00, // 67
1645 1.086571e+00, 1.085997e+00, 1.084451e+00, 1.083798e+00, 1.082513e+00, 1.081670e+00, // 73
1646 1.080735e+00, 1.075659e+00, 1.074341e+00, 1.073689e+00, 1.072787e+00, 1.072237e+00, // 79
1647 1.071107e+00, 1.069955e+00, 1.074856e+00, 1.065873e+00, 1.065938e+00, 1.065694e+00,
1648 1.062192e+00, 1.061967e+00, 1.061180e+00, 1.060960e+00, 1.059646e+00, 1.059975e+00,
1649 1.059658e+00
1650 
1651 };
1652 
1653 
1655 
1656 1.0, 1.0,
1657 1.3956e+00, 1.077959e+00, 1.129145e+00, 1.102088e+00, 1.089765e+00, 1.083542e+00, // 7
1658 1.089995e+00, 1.104895e+00, 1.097154e+00, 1.127663e+00, 1.133063e+00, 1.137425e+00, // 13
1659 1.136724e+00, 1.133859e+00, 1.132498e+00, 1.130276e+00, 1.127896e+00, 1.127656e+00, // 19
1660 1.127905e+00, 1.164210e+00, 1.162259e+00, 1.160075e+00, 1.158978e+00, 1.156649e+00, // 25
1661 1.194157e+00, 1.199177e+00, 1.198983e+00, 1.202325e+00, 1.221967e+00, 1.217548e+00,
1662 1.214389e+00, 1.211760e+00, 1.207335e+00, 1.206081e+00, 1.201766e+00, 1.199779e+00,
1663 1.197283e+00, 1.195706e+00, 1.193071e+00, 1.191115e+00, 1.208838e+00, 1.212681e+00,
1664 1.209235e+00, 1.207163e+00, 1.203451e+00, 1.201807e+00, 1.203283e+00, 1.203388e+00,
1665 1.202244e+00, 1.216509e+00, 1.211066e+00, 1.211504e+00, 1.207539e+00, 1.205991e+00,
1666 1.202143e+00, 1.200724e+00, 1.199595e+00, 1.198815e+00, 1.196025e+00, 1.195390e+00,
1667 1.191137e+00, 1.189791e+00, 1.185888e+00, 1.184575e+00, 1.181996e+00, 1.180229e+00,
1668 1.178545e+00, 1.177355e+00, 1.174616e+00, 1.173312e+00, 1.171016e+00, 1.169424e+00,
1669 1.184120e+00, 1.181478e+00, 1.179085e+00, 1.177817e+00, 1.176124e+00, 1.175003e+00,
1670 1.172947e+00, 1.170858e+00, 1.168170e+00, 1.169397e+00, 1.169304e+00, 1.168706e+00,
1671 1.162774e+00, 1.162217e+00, 1.160740e+00, 1.160196e+00, 1.157857e+00, 1.158220e+00,
1672 1.157267e+00
1673 };
1674 
1675 
1677 
1678 1.0, 1.0,
1679 1.463e+00, 1.100898e+00, 1.106773e+00, 1.070289e+00, 1.040514e+00, 1.062628e+00, // 7
1680 1.047992e+00, 1.038041e+00, 1.035862e+00, 1.043679e+00, 1.052466e+00, 1.065780e+00, // 13
1681 1.070551e+00, 1.078869e+00, 1.081541e+00, 1.090455e+00, 1.100847e+00, 1.098511e+00, // 19
1682 1.102226e+00, 1.118865e+00, 1.123143e+00, 1.126904e+00, 1.127785e+00, 1.130444e+00, // 25
1683 1.148502e+00, 1.127678e+00, 1.127244e+00, 1.123634e+00, 1.118347e+00, 1.118988e+00,
1684 1.118957e+00, 1.118696e+00, 1.118074e+00, 1.117722e+00, 1.116717e+00, 1.116111e+00,
1685 1.115311e+00, 1.114745e+00, 1.113814e+00, 1.113069e+00, 1.113141e+00, 1.113660e+00,
1686 1.112249e+00, 1.111343e+00, 1.109718e+00, 1.108942e+00, 1.108310e+00, 1.109549e+00,
1687 1.110227e+00, 1.108846e+00, 1.106183e+00, 1.106354e+00, 1.104388e+00, 1.103583e+00,
1688 1.101632e+00, 1.100896e+00, 1.100296e+00, 1.099873e+00, 1.098420e+00, 1.098082e+00,
1689 1.095892e+00, 1.095162e+00, 1.093144e+00, 1.092438e+00, 1.091083e+00, 1.090142e+00,
1690 1.089236e+00, 1.088604e+00, 1.087159e+00, 1.086465e+00, 1.085239e+00, 1.084388e+00,
1691 1.083473e+00, 1.078373e+00, 1.077136e+00, 1.076450e+00, 1.075561e+00, 1.074973e+00,
1692 1.073898e+00, 1.072806e+00, 1.067706e+00, 1.068684e+00, 1.068618e+00, 1.068294e+00,
1693 1.065241e+00, 1.064939e+00, 1.064166e+00, 1.063872e+00, 1.062659e+00, 1.062828e+00,
1694 1.062699e+00
1695 
1696 };
1697 
1698 
1699 //
1700 //
G4double GetElasticHadronNucleonXsc()
G4double GetRatioQE(const G4DynamicParticle *, G4int At, G4int Zt)
G4double GetNucleusRadius(const G4DynamicParticle *, const G4Element *)
G4double GetHadronNucleonXscPDG(const G4DynamicParticle *, const G4Element *)
G4double GetKmNeutronTotXscVector(G4double logEnergy)
static const double MeV
Definition: G4SIunits.hh:193
virtual G4double GetProductionElementCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4double A)
G4double GetKpProtonTotXscVector(G4double logEnergy)
static G4AntiOmegaMinus * AntiOmegaMinus()
G4double GetKineticEnergy() const
G4double GetTotalEnergy() const
G4double GetN() const
Definition: G4Element.hh:134
static const G4double a1
G4double CalcMandelstamS(const G4double, const G4double, const G4double)
static G4OmegaMinus * OmegaMinus()
const G4double pi
G4double GetZ() const
Definition: G4Element.hh:131
static G4KaonZeroLong * KaonZeroLong()
G4double GetRatioSD(const G4DynamicParticle *, G4int At, G4int Zt)
static const G4double fNeutronBarCorrectionIn[93]
static const G4double fPionMinusBarCorrectionTot[93]
G4ParticleDefinition * GetDefinition() const
static G4AntiSigmaPlus * AntiSigmaPlus()
int G4int
Definition: G4Types.hh:78
G4double GetIsoCrossSection(const G4DynamicParticle *, G4int Z, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
static G4SigmaZero * SigmaZero()
Definition: G4SigmaZero.cc:102
G4double GetHNinelasticXscVU(const G4DynamicParticle *, G4int At, G4int Zt)
static G4KaonMinus * KaonMinus()
Definition: G4KaonMinus.cc:113
G4double GetHadronNucleonXscNS(const G4DynamicParticle *, const G4ParticleDefinition *)
virtual G4double GetInelasticIsotopeCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A)
static G4AntiSigmaMinus * AntiSigmaMinus()
static G4XiZero * XiZero()
Definition: G4XiZero.cc:106
G4double GetHadronNucleonXscNS(const G4DynamicParticle *, const G4Element *)
static const G4double b3
G4double GetKaonNucleonXscGG(const G4DynamicParticle *, const G4ParticleDefinition *)
static G4KaonZeroShort * KaonZeroShort()
static G4AntiProton * AntiProton()
Definition: G4AntiProton.cc:93
G4double GetMass() const
bool G4bool
Definition: G4Types.hh:79
static G4XiMinus * XiMinus()
Definition: G4XiMinus.cc:106
static G4AntiXiMinus * AntiXiMinus()
static G4Triton * Triton()
Definition: G4Triton.cc:95
static G4Proton * Proton()
Definition: G4Proton.cc:93
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
static const double GeV
Definition: G4SIunits.hh:196
static const G4double b2
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
virtual G4double GetInelasticElementCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4double A)
G4double GetHadronNucleonXsc(const G4DynamicParticle *, const G4Element *)
static const G4double A[nN]
static G4PionZero * PionZero()
Definition: G4PionZero.cc:108
G4double GetHNinelasticXsc(const G4DynamicParticle *, const G4Element *)
static G4Deuteron * Deuteron()
Definition: G4Deuteron.cc:94
G4double GetParticleBarCorIn(const G4ParticleDefinition *theParticle, G4int Z)
static G4SigmaMinus * SigmaMinus()
virtual void CrossSectionDescription(std::ostream &) const
static const G4double fPionPlusBarCorrectionTot[93]
static G4ParticleTable * GetParticleTable()
static const G4double fProtonBarCorrectionTot[93]
static G4AntiLambda * AntiLambda()
int G4lrint(double ad)
Definition: templates.hh:163
static G4PionMinus * PionMinus()
Definition: G4PionMinus.cc:98
static G4AntiSigmaZero * AntiSigmaZero()
G4double GetKmProtonTotXscVector(G4double logEnergy)
virtual G4double GetTotalIsotopeCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A)
virtual G4double GetElasticIsotopeCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A)
static const double millibarn
Definition: G4SIunits.hh:96
static const G4double b1
static G4AntiXiZero * AntiXiZero()
G4double CalculateEcmValue(const G4double, const G4double, const G4double)
static const G4double fPionPlusBarCorrectionIn[93]
G4bool IsIsoApplicable(const G4DynamicParticle *aDP, G4int Z, G4int A, const G4Element *elm=0, const G4Material *mat=0)
static G4Alpha * Alpha()
Definition: G4Alpha.cc:89
static G4SigmaPlus * SigmaPlus()
Definition: G4SigmaPlus.cc:108
static G4Lambda * Lambda()
Definition: G4Lambda.cc:108
double G4double
Definition: G4Types.hh:76
virtual G4double GetTotalElementCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4double A)
static G4KaonPlus * KaonPlus()
Definition: G4KaonPlus.cc:113
static const G4double fProtonBarCorrectionIn[93]
virtual G4double GetElasticElementCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4double A)
static const G4double fPionMinusBarCorrectionIn[93]
G4double GetKaonNucleonXscVector(const G4DynamicParticle *, G4int At, G4int Zt)
G4ThreeVector G4ParticleMomentum
static G4He3 * He3()
Definition: G4He3.cc:94
const G4double oneThird
virtual G4double ComputeQuasiElasticRatio(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A)
static const double fermi
Definition: G4SIunits.hh:93
G4double GetParticleBarCorTot(const G4ParticleDefinition *theParticle, G4int Z)
static G4AntiNeutron * AntiNeutron()
static const G4double fNeutronBarCorrectionTot[93]
G4double GetInelasticHadronNucleonXsc()
G4ThreeVector GetMomentum() const
G4double GetKpNeutronTotXscVector(G4double logEnergy)
virtual G4double GetProductionIsotopeCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A)