Geant4_10
G4XTRGammaRadModel.hh
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 //
29 //
30 // Rough model describing a gamma function distributed radiator of X-ray
31 // transition radiation. XTR is considered to flux after radiator!
32 // Thicknesses of plates and gas gaps are distributed according to gamma
33 // distribution. x are thicknesses of plates or gas gaps:
34 //
35 // p(x) = (alpha/<x>)^alpha * x^(alpha-1) * std::exp(-alpha*x/<x>) / G(alpha)
36 //
37 // G(alpha) is Euler's gamma function.
38 // Plates have mean <x> = fPlateThick > 0 and power alpha = fAlphaPlate > 0 :
39 // Gas gaps have mean <x> = fGasThick > 0 and power alpha = fAlphaGas > 0 :
40 // We suppose that:
41 // formation zone ~ mean thickness << absorption length
42 // for each material and in the range 1-100 keV. This allows us to simplify
43 // interference effects in radiator stack (GetStackFactor method).
44 //
45 //
46 // History:
47 //
48 // 03.10.05 V. Grichine, first version
49 //
50 
51 #ifndef G4XTRGammaRadModel_h
52 #define G4XTRGammaRadModel_h 1
53 
54 #include "G4VXTRenergyLoss.hh"
55 
57 {
58 public:
59 
64  const G4String & processName = "XTRgammaRadiator" );
65  virtual ~G4XTRGammaRadModel ();
66 
67  // Pure virtual function from base class
68 
70 
71 private:
72 
73  // G4double fAlphaPlate, fAlphaGas ;
74 };
75 
76 #endif
G4double GetStackFactor(G4double energy, G4double gamma, G4double varAngle)
int G4int
Definition: G4Types.hh:78
double energy
Definition: plottest35.C:25
G4XTRGammaRadModel(G4LogicalVolume *anEnvelope, G4double, G4double, G4Material *, G4Material *, G4double, G4double, G4int, const G4String &processName="XTRgammaRadiator")
double G4double
Definition: G4Types.hh:76