Geant4_10
G4XTRGammaRadModel.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 //
28 
29 #include <complex>
30 
31 #include "G4XTRGammaRadModel.hh"
32 #include "Randomize.hh"
33 
34 #include "G4Gamma.hh"
35 
36 using namespace std;
37 
39 //
40 // Constructor, destructor
41 
43  G4double alphaPlate,
44  G4double alphaGas,
45  G4Material* foilMat,G4Material* gasMat,
47  const G4String& processName) :
48  G4VXTRenergyLoss(anEnvelope,foilMat,gasMat,a,b,n,processName)
49 {
50  G4cout<<"Gammma distributed X-ray TR radiator model is called"<<G4endl ;
51 
52  // Build energy and angular integral spectra of X-ray TR photons from
53  // a radiator
54 
55  fAlphaPlate = alphaPlate ;
56  fAlphaGas = alphaGas ;
57  G4cout<<"fAlphaPlate = "<<fAlphaPlate<<" ; fAlphaGas = "<<fAlphaGas<<G4endl ;
58  fExitFlux = true;
59  // BuildTable() ;
60 }
61 
63 
65 {
66  ;
67 }
68 
69 
70 
72 //
73 // Rough approximation for radiator interference factor for the case of
74 // fully GamDistr radiator. The plate and gas gap thicknesses are distributed
75 // according to exponent. The mean values of the plate and gas gap thicknesses
76 // are supposed to be about XTR formation zones but much less than
77 // mean absorption length of XTR photons in coresponding material.
78 
79 G4double
81  G4double gamma, G4double varAngle )
82 {
83  G4double result, Qa, Qb, Q, Za, Zb, Ma, Mb ;
84 
85  Za = GetPlateFormationZone(energy,gamma,varAngle) ;
86  Zb = GetGasFormationZone(energy,gamma,varAngle) ;
87 
88  Ma = GetPlateLinearPhotoAbs(energy) ;
89  Mb = GetGasLinearPhotoAbs(energy) ;
90 
91  Qa = ( 1.0 + fPlateThick*Ma/fAlphaPlate ) ;
92  Qa = std::pow(Qa,-fAlphaPlate) ;
93  Qb = ( 1.0 + fGasThick*Mb/fAlphaGas ) ;
94  Qb = std::pow(Qb,-fAlphaGas) ;
95  Q = Qa*Qb ;
96 
98  G4complex Cb(1.0+0.5*fGasThick*Mb/fAlphaGas,fGasThick/Zb/fAlphaGas) ;
99 
100  G4complex Ha = std::pow(Ca,-fAlphaPlate) ;
101  G4complex Hb = std::pow(Cb,-fAlphaGas) ;
102  G4complex H = Ha*Hb ;
103 
104  G4complex F1 = ( 0.5*(1+Qa)*(1.0+H) - Ha - Qa*Hb )/(1.0-H) ;
105 
106  G4complex F2 = (1.0-Ha)*(Qa-Ha)*Hb/(1.0-H)/(Q-H) ;
107 
108  F2 *= std::pow(Q,G4double(fPlateNumber)) - std::pow(H,fPlateNumber) ;
109 
110  result = ( 1 - std::pow(Q,G4double(fPlateNumber)) )/( 1 - Q ) ;
111 
112  G4complex stack = result*F1;
113  stack += F2;
114  stack *= 2.0*OneInterfaceXTRdEdx(energy,gamma,varAngle);
115 
116  result = std::real(stack);
117 
118  // result *= 2.0*std::real(F1);
119  // result += 2.0*std::real(F2);
120 
121  return result ;
122 }
123 
124 
125 //
126 //
128 
129 
130 
131 
132 
133 
134 
135 
G4double GetGasFormationZone(G4double, G4double, G4double)
G4double GetStackFactor(G4double energy, G4double gamma, G4double varAngle)
tuple a
Definition: test.py:11
G4double GetPlateLinearPhotoAbs(G4double)
G4double GetGasLinearPhotoAbs(G4double)
G4double G4NeutronHPJENDLHEData::G4double result
int G4int
Definition: G4Types.hh:78
G4double GetPlateFormationZone(G4double, G4double, G4double)
tuple b
Definition: test.py:12
Char_t n[5]
std::complex< G4double > G4complex
Definition: G4Types.hh:81
G4GLOB_DLL std::ostream G4cout
double energy
Definition: plottest35.C:25
G4XTRGammaRadModel(G4LogicalVolume *anEnvelope, G4double, G4double, G4Material *, G4Material *, G4double, G4double, G4int, const G4String &processName="XTRgammaRadiator")
G4complex OneInterfaceXTRdEdx(G4double energy, G4double gamma, G4double varAngle)
#define G4endl
Definition: G4ios.hh:61
double G4double
Definition: G4Types.hh:76