90     pi_rcl2(
pi*classic_electr_radius*classic_electr_radius),
 
  124   G4double tau   = ekin/electron_mass_c2;
 
  177   CLHEP::HepRandomEngine* rndmEngine = G4Random::getTheEngine();
 
  180   if(PositKinEnergy == 0.0) {
 
  181     G4double cost = 2.*rndmEngine->flat()-1.;
 
  182     G4double sint = sqrt((1. - cost)*(1. + cost));
 
  185     phi = 
twopi * rndmEngine->flat();
 
  193     pol.set(-sinphi, cosphi, 0.0);
 
  201     G4double tau     = PositKinEnergy/electron_mass_c2;
 
  204     G4double sqgrate = sqrt(tau/tau2)*0.5;
 
  210     G4double epsilqot = epsilmax/epsilmin;
 
  218       epsil = epsilmin*
G4Exp(
G4Log(epsilqot)*rndmEngine->flat());
 
  219       greject = 1. - epsil + (2.*gam*epsil-1.)/(epsil*tau2*tau2);
 
  221     } 
while( greject < rndmEngine->
flat());
 
  227     G4double cost = (epsil*tau2-1.)/(epsil*sqg2m1);
 
  228     if(std::abs(cost) > 1.0) {
 
  229       G4cout << 
"### G4eeToTwoGammaModel WARNING cost= " << cost
 
  230              << 
" positron Ekin(MeV)= " << PositKinEnergy
 
  231              << 
" gamma epsil= " << epsil
 
  233       if(cost > 1.0) cost = 1.0;
 
  236     G4double sint = sqrt((1.+cost)*(1.-cost));
 
  243     G4double TotalAvailableEnergy = PositKinEnergy + 2.0*electron_mass_c2;
 
  244     G4double Phot1Energy = epsil*TotalAvailableEnergy;
 
  246     G4ThreeVector Phot1Direction(sint*cos(phi), sint*sin(phi), cost);
 
  247     Phot1Direction.rotateUz(PositDirection);
 
  249     phi = 
twopi * rndmEngine->flat();
 
  253     pol.rotateUz(Phot1Direction);
 
  256     G4double Phot2Energy =(1.-epsil)*TotalAvailableEnergy;
 
  257     G4double PositP= sqrt(PositKinEnergy*(PositKinEnergy+2.*electron_mass_c2));
 
  258     G4ThreeVector dir = PositDirection*PositP - Phot1Direction*Phot1Energy;
 
  265     pol.set(-sinphi, cosphi, 0.0);
 
  266     pol.rotateUz(Phot1Direction);
 
  267     cost = pol*Phot2Direction;
 
  268     pol -= cost*Phot2Direction;
 
  281   vdp->push_back(aGamma1);
 
  282   vdp->push_back(aGamma2);
 
G4double GetKineticEnergy() const 
 
CLHEP::Hep3Vector G4ThreeVector
 
G4ParticleChangeForGamma * fParticleChange
 
static constexpr double twopi
 
virtual G4double CrossSectionPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy) final
 
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
 
G4GLOB_DLL std::ostream G4cout
 
virtual G4double ComputeCrossSectionPerElectron(const G4ParticleDefinition *, G4double kinEnergy, G4double cutEnergy=0., G4double maxEnergy=DBL_MAX)
 
G4double GetElectronDensity() const 
 
const G4ThreeVector & GetMomentumDirection() const 
 
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0., G4double cutEnergy=0., G4double maxEnergy=DBL_MAX) final
 
static constexpr double eV
 
void SetPolarization(G4double polX, G4double polY, G4double polZ)
 
G4double G4Log(G4double x)
 
G4double G4Exp(G4double initial_x)
Exponential Function double precision. 
 
T max(const T t1, const T t2)
brief Return the largest of the two arguments 
 
G4eeToTwoGammaModel(const G4ParticleDefinition *p=0, const G4String &nam="eplus2gg")
 
G4ParticleDefinition * theGamma
 
void SetProposedKineticEnergy(G4double proposedKinEnergy)
 
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
 
static constexpr double pi
 
void ProposeTrackStatus(G4TrackStatus status)
 
G4ParticleChangeForGamma * GetParticleChangeForGamma()
 
virtual ~G4eeToTwoGammaModel()