136   if(cutEnergy < tmax) {
 
  138     G4double xmin  = cutEnergy/kineticEnergy;
 
  140     G4double tau   = kineticEnergy/electron_mass_c2;
 
  143     G4double beta2 = tau*(tau + 2)/gamma2;
 
  148       G4double gg = (2.0*gam - 1.0)/gamma2;
 
  149       cross = ((xmax - xmin)*(1.0 - gg + 1.0/(xmin*xmax)
 
  150                               + 1.0/((1.0-xmin)*(1.0 - xmax)))
 
  151             - gg*
G4Log( xmax*(1.0 - xmin)/(xmin*(1.0 - xmax)) ) ) / beta2;
 
  165       cross = (xmax - xmin)*(1.0/(beta2*xmin*xmax) + b2
 
  166             - 0.5*b3*(xmin + xmax)
 
  167             + b4*(xmin*xmin + xmin*xmax + xmax*xmax)/3.0)
 
  168             - b1*
G4Log(xmax/xmin);
 
  171     cross *= twopi_mc2_rcl2/kineticEnergy;
 
  220   if (kineticEnergy < th) { tkin = th; }
 
  222   G4double tau   = tkin/electron_mass_c2;
 
  229   eexc          /= electron_mass_c2;
 
  238     dedx = 
G4Log(2.0*(tau + 2.0)/eexc2) - 1.0 - beta2
 
  239          + 
G4Log((tau-d)*d) + tau/(tau-d)
 
  240          + (0.5*d*d + (2.0*tau + 1.)*
G4Log(1. - d/tau))/gamma2;
 
  249     dedx = 
G4Log(2.0*(tau + 2.0)/eexc2) + 
G4Log(tau*d)
 
  250          - beta2*(tau + 2.0*d - y*(3.0*d2 
 
  251          + y*(d - d3 + y*(d2 - tau*d3 + 
d4))))/tau;
 
  259   dedx *= twopi_mc2_rcl2*electronDensity/beta2;
 
  260   if (dedx < 0.0) { dedx = 0.0; }
 
  264   if (kineticEnergy < th) {
 
  265     x = kineticEnergy/th;
 
  266     if(x > 0.25) { dedx /= sqrt(x); }
 
  267     else { dedx *= 1.4*sqrt(x)/(0.1 + 
x); }
 
  287     tmax = 0.5*kineticEnergy; 
 
  289     tmax = kineticEnergy; 
 
  291   if(maxEnergy < tmax) { tmax = maxEnergy; }
 
  292   if(tmin >= tmax) { 
return; }
 
  301   CLHEP::HepRandomEngine* rndmEngine = G4Random::getTheEngine();
 
  307     G4double gg = (2.0*gam - 1.0)/gamma2;
 
  309     grej = 1.0 - gg*xmax + xmax*xmax*(1.0 - gg + (1.0 - gg*y)/(y*y));
 
  312       rndmEngine->flatArray(2, rndm);
 
  313       x = xmin*xmax/(xmin*(1.0 - rndm[0]) + xmax*rndm[0]);
 
  315       z = 1.0 - gg*x + x*x*(1.0 - gg + (1.0 - gg*y)/(y*y));
 
  326     } 
while(grej * rndm[1] > z);
 
  341     grej = 1.0 + (y*y*b4 - xmin*xmin*xmin*b3 + y*b2 - xmin*
b1)*beta2; 
 
  343       rndmEngine->flatArray(2, rndm);
 
  344       x = xmin*xmax/(xmin*(1.0 - rndm[0]) + xmax*rndm[0]);
 
  346       z = 1.0 + (y*y*b4 - x*y*b3 + y*b2 - x*
b1)*beta2; 
 
  357     } 
while(grej * rndm[1] > z);
 
  360   G4double deltaKinEnergy = x * kineticEnergy;
 
  374       sqrt(deltaKinEnergy * (deltaKinEnergy + 2.0*electron_mass_c2));
 
  375     G4double cost = deltaKinEnergy * (energy + electron_mass_c2) /
 
  377     if(cost > 1.0) { cost = 1.0; }
 
  378     G4double sint = sqrt((1.0 - cost)*(1.0 + cost));
 
  382     deltaDirection.set(sint*cos(phi),sint*sin(phi), cost) ;
 
  389   vdp->push_back(delta);
 
  392   kineticEnergy -= deltaKinEnergy;
 
  394   finalP               = finalP.unit();
 
virtual G4double CrossSectionPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy)
 
G4IonisParamMat * GetIonisation() const 
 
G4ParticleChangeForLoss * GetParticleChangeForLoss()
 
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
 
G4bool isElectron(G4int ityp)
 
G4double GetKineticEnergy() const 
 
CLHEP::Hep3Vector G4ThreeVector
 
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kineticEnergy, G4double Z, G4double A, G4double cutEnergy, G4double maxEnergy)
 
void SetParticle(const G4ParticleDefinition *p)
 
G4VEmAngularDistribution * GetAngularDistribution()
 
virtual G4double ComputeDEDXPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy)
 
G4double GetZeffective() const 
 
G4double GetTotalMomentum() const 
 
G4ParticleChangeForLoss * fParticleChange
 
virtual G4ThreeVector & SampleDirection(const G4DynamicParticle *dp, G4double finalTotalEnergy, G4int Z, const G4Material *)=0
 
G4double GetElectronDensity() const 
 
G4bool UseAngularGeneratorFlag() const 
 
const G4ParticleDefinition * particle
 
const G4ThreeVector & GetMomentumDirection() const 
 
G4MollerBhabhaModel(const G4ParticleDefinition *p=nullptr, const G4String &nam="MollerBhabha")
 
static const double twopi
 
void SetProposedKineticEnergy(G4double proposedKinEnergy)
 
void SetProposedMomentumDirection(const G4ThreeVector &dir)
 
G4double G4Log(G4double x)
 
G4ParticleDefinition * theElectron
 
virtual G4double MaxSecondaryEnergy(const G4ParticleDefinition *, G4double kinEnergy)
 
G4double DensityCorrection(G4double x)
 
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
 
G4double energy(const ThreeVector &p, const G4double m)
 
virtual G4double ComputeCrossSectionPerElectron(const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy)
 
void SetAngularDistribution(G4VEmAngularDistribution *)
 
const G4double x[NPOINTSGL]
 
T min(const T t1, const T t2)
brief Return the smallest of the two arguments 
 
G4double GetMeanExcitationEnergy() const 
 
static G4Electron * Electron()
 
static const G4double twoln10
 
virtual ~G4MollerBhabhaModel()
 
G4ThreeVector GetMomentum() const 
 
const G4Material * GetMaterial() const 
 
G4int SelectRandomAtomNumber(const G4Material *)