Geant4  10.02.p01
G4PreCompoundModel.hh
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4PreCompoundModel.hh 80062 2014-03-31 13:41:30Z gcosmo $
27 //
28 // by V. Lara
29 //
30 // Class Description
31 // Model implementation for pre-equilibrium decay models in geant4.
32 // To be used in your physics list, in case you neeed this kind of physics.
33 // Can be used as a stand-allone model, but also in conjunction with an intra-nuclear
34 // transport, or any of the string-parton models.
35 // Class Description - End
36 //
37 // Modified:
38 // 03.09.2008 J.M.Quesada added external choice of inverse
39 // cross section option.(default OPTxs=3)
40 // 06.09.2008 J.M.Quesada external choices have been added for:
41 // - superimposed Coulomb barrier (if useSICB=true, default false)
42 // - "never go back" hipothesis (if useNGB=true, default false)
43 // - soft cutoff from preeq. to equlibrium (if useSCO=true, default false)
44 // - CEM transition probabilities (if useCEMtr=true)
45 // 30.10.2009 J.M.Quesada CEM transition probabilities are set as default
46 // 20.08.2010 V.Ivanchenko Cleanup of the code - changed data members and inline methods
47 // 03.01.2012 V.Ivanchenko Added pointer to G4ExcitationHandler to the
48 // constructor
49 
50 #ifndef G4PreCompoundModel_h
51 #define G4PreCompoundModel_h 1
52 
53 #include "G4VPreCompoundModel.hh"
54 #include "G4Fragment.hh"
56 #include "G4ReactionProduct.hh"
57 #include "G4ExcitationHandler.hh"
58 
63 
65 {
66 public:
67 
69 
70  virtual ~G4PreCompoundModel();
71 
72  virtual G4HadFinalState * ApplyYourself(const G4HadProjectile & thePrimary,
73  G4Nucleus & theNucleus);
74 
75  virtual G4ReactionProductVector* DeExcite(G4Fragment& aFragment);
76 
77  virtual void ModelDescription(std::ostream& outFile) const;
78  virtual void DeExciteModelDescription(std::ostream& outFile) const;
79  void UseHETCEmission();
80  void UseDefaultEmission();
81  void UseGNASHTransition();
82  void UseDefaultTransition();
83 
84  //for cross section selection
85  void SetOPTxs(G4int opt);
86 
87  //for the rest of external choices
88  void UseSICB();
89  void UseNGB();
90  void UseSCO();
91  void UseCEMtr();
92 
93 private:
94 
95  inline
96  void PerformEquilibriumEmission(const G4Fragment & aFragment,
98 
99  // G4PreCompoundModel();
102  G4bool operator==(const G4PreCompoundModel &right) const;
103  G4bool operator!=(const G4PreCompoundModel &right) const;
104 
105  //==============
106  // Data Members
107  //==============
108 
111 
114 
116 
119 
120  //for cross section options
122 
123  //for the rest of external choices
128 
131 
133 
134 };
135 
136 inline void
138  G4ReactionProductVector * Result) const
139 {
140  G4ReactionProductVector* theEquilibriumResult =
141  GetExcitationHandler()->BreakItUp(aFragment);
142  Result->insert(Result->end(),theEquilibriumResult->begin(), theEquilibriumResult->end());
143  delete theEquilibriumResult;
144 }
145 
146 #endif
147 
void PerformEquilibriumEmission(const G4Fragment &aFragment, G4ReactionProductVector *theResult) const
const G4PreCompoundModel & operator=(const G4PreCompoundModel &right)
G4PreCompoundEmission * theEmission
G4PreCompoundModel(G4ExcitationHandler *ptr=0)
G4bool operator!=(const G4PreCompoundModel &right) const
const G4ParticleDefinition * neutron
G4bool operator==(const G4PreCompoundModel &right) const
int G4int
Definition: G4Types.hh:78
virtual G4HadFinalState * ApplyYourself(const G4HadProjectile &thePrimary, G4Nucleus &theNucleus)
G4ReactionProductVector * BreakItUp(const G4Fragment &theInitialState)
G4HadFinalState theResult
std::vector< G4ReactionProduct * > G4ReactionProductVector
G4ExcitationHandler * GetExcitationHandler() const
G4VPreCompoundTransitions * theTransition
bool G4bool
Definition: G4Types.hh:79
virtual G4ReactionProductVector * DeExcite(G4Fragment &aFragment)
virtual void ModelDescription(std::ostream &outFile) const
const G4ParticleDefinition * proton
double G4double
Definition: G4Types.hh:76
virtual void DeExciteModelDescription(std::ostream &outFile) const
void SetOPTxs(G4int opt)