Geant4  10.02.p01
G4PolynomialPDF.hh
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // -------------------------------------------------------------------
28 // GEANT4 Class file
29 //
30 //
31 // File name: G4PolynomialPDF
32 //
33 // Author: Jason Detwiler (jasondet@gmail.com)
34 //
35 // Creation date: Aug 2012
36 //
37 // Description: Evaluates, generates random numbers from, and evaluates
38 // the inverse of a polynomial PDF, its CDF, and its first and second
39 // derivative.
40 //
41 // -------------------------------------------------------------------
42 
43 #ifndef G4POLYNOMIALPDF_HH
44 #define G4POLYNOMIALPDF_HH
45 
46 #include "globals.hh"
47 #include <vector>
48 
50 {
51  public:
52  G4PolynomialPDF(size_t n = 0, const double* coeffs = nullptr,
53  G4double x1=0, G4double x2=1);
55 
56  // Setters and Getters for coefficients
57  inline void SetNCoefficients(size_t n) { fCoefficients.resize(n); fChanged = true; }
58  inline size_t GetNCoefficients() const { return fCoefficients.size(); }
59  inline void SetCoefficients(const std::vector<G4double>& v) { fCoefficients = v; }
60  inline G4double GetCoefficient(size_t i) const { return fCoefficients[i]; }
61  void SetCoefficient(size_t i, G4double value);
62  void SetCoefficients(size_t n, const G4double* coeffs);
63 
64  // Set the domain over which random numbers are generated and over which
65  // the CDF is evaluated
66  void SetDomain(G4double x1, G4double x2);
67 
68  // Normalize PDF to 1 over domain fX1 to fX2. Used internally by
69  // GetRandomX(), but the user may want to call this as well for evaluation
70  // purposes.
71  void Normalize();
72 
73  // Evaluate (d/dx)^ddxPower f(x) (-1 <= ddxPower <= 2)
74  // ddxPower = -1 -> CDF;
75  // ddxPower = 0 -> PDF
76  // ddxPower = 1 -> PDF'
77  // ddxPower = 2 -> PDF''
78  G4double Evaluate(G4double x, G4int ddxPower = 0);
79 
80  // Generate a random number from this PDF
82 
83  // Set the tolerance to within negative minima are checked
85 
86  // Find a value x between x1 and x2 at which ddxPower[PDF](x) = p.
87  // ddxPower = -1 -> CDF;
88  // ddxPower = 0 -> PDF
89  // ddxPower = 1 -> PDF'
90  // (ddxPower = 2 not implemented)
91  // Solves analytically when possible, and otherwise uses the Newton-Raphson
92  // method to find the zero of ddxPower[PDF](x) - p.
93  // If not found in range, returns the nearest boundary.
94  // Beware that if x1 and x2 are not set carefully there may be multiple
95  // solutions, and care is not taken to select a particular one among them.
96  // Returns x2 on error
97  G4double GetX( G4double p, G4double x1, G4double x2, G4int ddxPower = 0, G4double guess = 1.e99, G4bool bisect = true );
98  inline G4double EvalInverseCDF(G4double p) { return GetX(p, fX1, fX2, -1, fX1 + p*(fX2-fX1)); }
100 
101  void Dump();
102 
103  protected:
104  // Checks for negative values between x1 and x2. Used by GetRandomX()
106 
109  std::vector<G4double> fCoefficients;
112 };
113 
114 #endif
std::vector< G4double > fCoefficients
void SetCoefficients(const std::vector< G4double > &v)
static const G4float tolerance
G4double GetRandomX()
void SetTolerance(G4double tolerance)
void SetNCoefficients(size_t n)
G4PolynomialPDF(size_t n=0, const double *coeffs=nullptr, G4double x1=0, G4double x2=1)
G4double GetX(G4double p, G4double x1, G4double x2, G4int ddxPower=0, G4double guess=1.e99, G4bool bisect=true)
int G4int
Definition: G4Types.hh:78
G4double Bisect(G4double p, G4double x1, G4double x2)
G4double GetCoefficient(size_t i) const
void SetDomain(G4double x1, G4double x2)
bool G4bool
Definition: G4Types.hh:79
const G4int n
void SetCoefficient(size_t i, G4double value)
G4bool HasNegativeMinimum(G4double x1, G4double x2)
const G4double x[NPOINTSGL]
size_t GetNCoefficients() const
G4double EvalInverseCDF(G4double p)
G4double Evaluate(G4double x, G4int ddxPower=0)
double G4double
Definition: G4Types.hh:76