Geant4  10.02.p01
G4MuPairProductionModel.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4MuPairProductionModel.cc 91743 2015-08-04 11:49:58Z gcosmo $
27 //
28 // -------------------------------------------------------------------
29 //
30 // GEANT4 Class file
31 //
32 //
33 // File name: G4MuPairProductionModel
34 //
35 // Author: Vladimir Ivanchenko on base of Laszlo Urban code
36 //
37 // Creation date: 24.06.2002
38 //
39 // Modifications:
40 //
41 // 04-12-02 Change G4DynamicParticle constructor in PostStep (V.Ivanchenko)
42 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko)
43 // 24-01-03 Fix for compounds (V.Ivanchenko)
44 // 27-01-03 Make models region aware (V.Ivanchenko)
45 // 13-02-03 Add model (V.Ivanchenko)
46 // 06-06-03 Fix in cross section calculation for high energy (V.Ivanchenko)
47 // 20-10-03 2*xi in ComputeDDMicroscopicCrossSection (R.Kokoulin)
48 // 8 integration points in ComputeDMicroscopicCrossSection
49 // 12-01-04 Take min cut of e- and e+ not its sum (V.Ivanchenko)
50 // 10-02-04 Update parameterisation using R.Kokoulin model (V.Ivanchenko)
51 // 28-04-04 For complex materials repeat calculation of max energy for each
52 // material (V.Ivanchenko)
53 // 01-11-04 Fix bug inside ComputeDMicroscopicCrossSection (R.Kokoulin)
54 // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko)
55 // 03-08-05 Add SetParticle method (V.Ivantchenko)
56 // 23-10-05 Add protection in sampling of e+e- pair energy needed for
57 // low cuts (V.Ivantchenko)
58 // 13-02-06 Add ComputeCrossSectionPerAtom (mma)
59 // 24-04-07 Add protection in SelectRandomAtom method (V.Ivantchenko)
60 // 12-05-06 Updated sampling (use cut) in SelectRandomAtom (A.Bogdanov)
61 // 11-10-07 Add ignoreCut flag (V.Ivanchenko)
62 
63 //
64 // Class Description:
65 //
66 //
67 // -------------------------------------------------------------------
68 //
69 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
70 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
71 
73 #include "G4PhysicalConstants.hh"
74 #include "G4SystemOfUnits.hh"
75 #include "G4Electron.hh"
76 #include "G4Positron.hh"
77 #include "G4MuonMinus.hh"
78 #include "G4MuonPlus.hh"
79 #include "Randomize.hh"
80 #include "G4Material.hh"
81 #include "G4Element.hh"
82 #include "G4ElementVector.hh"
83 #include "G4ProductionCutsTable.hh"
86 #include "G4Log.hh"
87 #include "G4Exp.hh"
88 
89 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
90 
91 // static members
92 //
93 const G4int G4MuPairProductionModel::zdat[]={1, 4, 13, 29, 92};
94 const G4double G4MuPairProductionModel::adat[]={1.01, 9.01,26.98, 63.55, 238.03};
95 const G4double G4MuPairProductionModel::xgi[]={ 0.0199, 0.1017, 0.2372, 0.4083,
96  0.5917, 0.7628, 0.8983, 0.9801 };
97 const G4double G4MuPairProductionModel::wgi[]={ 0.0506, 0.1112, 0.1569, 0.1813,
98  0.1813, 0.1569, 0.1112, 0.0506 };
99 
100 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
101 
102 using namespace std;
103 
105  const G4String& nam)
106  : G4VEmModel(nam),
107  particle(0),
108  factorForCross(4.*fine_structure_const*fine_structure_const
109  *classic_electr_radius*classic_electr_radius/(3.*pi)),
110  sqrte(sqrt(G4Exp(1.))),
111  currentZ(0),
112  fParticleChange(0),
113  minPairEnergy(4.*electron_mass_c2),
114  lowestKinEnergy(1.0*GeV),
115  nzdat(5),
116  nYBinPerDecade(4),
117  nbiny(1000),
118  nbine(0),
119  ymin(-5.),
120  dy(0.005)
121 {
123 
126 
127  particleMass = lnZ = z13 = z23 = 0;
128 
129  // setup lowest limit dependent on particle mass
130  if(p) {
131  SetParticle(p);
132  G4double limit = p->GetPDGMass()*8;
133  if(limit > lowestKinEnergy) { lowestKinEnergy = limit; }
134  }
136  emax = 10*TeV;
137 }
138 
139 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
140 
142 {}
143 
144 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
145 
147  const G4ParticleDefinition*,
148  G4double cut)
149 {
150  return std::max(lowestKinEnergy,cut);
151 }
152 
153 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
154 
156  const G4DataVector& cuts)
157 {
158  SetParticle(p);
160 
161  // for low-energy application this process should not work
162  if(lowestKinEnergy >= HighEnergyLimit()) { return; }
163 
164  // define scale of internal table for each thread only once
165  if(0 == nbine) {
168  nbine = size_t(nYBinPerDecade*std::log10(emax/emin));
169  if(nbine < 3) { nbine = 3; }
170 
172  dy = -ymin/G4double(nbiny);
173  }
174 
175  if(IsMaster() && p == particle) {
176 
177  if(!fElementData) {
178  fElementData = new G4ElementData();
180  }
181  InitialiseElementSelectors(p, cuts);
182  }
183 }
184 
185 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
186 
188  G4VEmModel* masterModel)
189 {
190  if(p == particle && lowestKinEnergy < HighEnergyLimit()) {
192  fElementData = masterModel->GetElementData();
193  }
194 }
195 
196 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
197 
199  const G4Material* material,
200  const G4ParticleDefinition*,
201  G4double kineticEnergy,
202  G4double cutEnergy)
203 {
204  G4double dedx = 0.0;
205  if (cutEnergy <= minPairEnergy || kineticEnergy <= lowestKinEnergy)
206  { return dedx; }
207 
208  const G4ElementVector* theElementVector = material->GetElementVector();
209  const G4double* theAtomicNumDensityVector =
210  material->GetAtomicNumDensityVector();
211 
212  // loop for elements in the material
213  for (size_t i=0; i<material->GetNumberOfElements(); ++i) {
214  G4double Z = (*theElementVector)[i]->GetZ();
215  G4double tmax = MaxSecondaryEnergyForElement(kineticEnergy, Z);
216  G4double loss = ComputMuPairLoss(Z, kineticEnergy, cutEnergy, tmax);
217  dedx += loss*theAtomicNumDensityVector[i];
218  }
219  if (dedx < 0.) { dedx = 0.; }
220  return dedx;
221 }
222 
223 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
224 
226  G4double tkin,
227  G4double cutEnergy,
228  G4double tmax)
229 {
230  G4double loss = 0.0;
231 
232  G4double cut = std::min(cutEnergy,tmax);
233  if(cut <= minPairEnergy) { return loss; }
234 
235  // calculate the rectricted loss
236  // numerical integration in log(PairEnergy)
237  G4double ak1=6.9;
238  G4double ak2=1.0;
240  G4double bbb = G4Log(cut);
241 
242  G4int kkk = (G4int)((bbb-aaa)/ak1+ak2);
243  if (kkk > 8) { kkk = 8; }
244  else if (kkk < 1) { kkk = 1; }
245 
246  G4double hhh = (bbb-aaa)/(G4double)kkk;
247  G4double x = aaa;
248 
249  for (G4int l=0 ; l<kkk; l++)
250  {
251 
252  for (G4int ll=0; ll<8; ll++)
253  {
254  G4double ep = G4Exp(x+xgi[ll]*hhh);
255  loss += wgi[ll]*ep*ep*ComputeDMicroscopicCrossSection(tkin, Z, ep);
256  }
257  x += hhh;
258  }
259  loss *= hhh;
260  if (loss < 0.) loss = 0.;
261  return loss;
262 }
263 
264 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
265 
267  G4double tkin,
268  G4double Z,
269  G4double cutEnergy)
270 {
271  G4double cross = 0.;
272  G4double tmax = MaxSecondaryEnergyForElement(tkin, Z);
273  G4double cut = std::max(cutEnergy, minPairEnergy);
274  if (tmax <= cut) { return cross; }
275 
276  G4double ak1=6.9 ;
277  G4double ak2=1.0 ;
278  G4double aaa = G4Log(cut);
279  G4double bbb = G4Log(tmax);
280  G4int kkk = (G4int)((bbb-aaa)/ak1 + ak2);
281  if(kkk > 8) { kkk = 8; }
282  else if (kkk < 1) { kkk = 1; }
283 
284  G4double hhh = (bbb-aaa)/G4double(kkk);
285  G4double x = aaa;
286 
287  for(G4int l=0; l<kkk; ++l)
288  {
289  for(G4int i=0; i<8; ++i)
290  {
291  G4double ep = G4Exp(x + xgi[i]*hhh);
292  cross += ep*wgi[i]*ComputeDMicroscopicCrossSection(tkin, Z, ep);
293  }
294  x += hhh;
295  }
296 
297  cross *= hhh;
298  if(cross < 0.0) { cross = 0.0; }
299  return cross;
300 }
301 
302 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
303 
305  G4double tkin,
306  G4double Z,
307  G4double pairEnergy)
308  // Calculates the differential (D) microscopic cross section
309  // using the cross section formula of R.P. Kokoulin (18/01/98)
310  // Code modified by R.P. Kokoulin, V.N. Ivanchenko (27/01/04)
311 {
312  static const G4double bbbtf= 183. ;
313  static const G4double bbbh = 202.4 ;
314  static const G4double g1tf = 1.95e-5 ;
315  static const G4double g2tf = 5.3e-5 ;
316  static const G4double g1h = 4.4e-5 ;
317  static const G4double g2h = 4.8e-5 ;
318 
319  G4double totalEnergy = tkin + particleMass;
320  G4double residEnergy = totalEnergy - pairEnergy;
321  G4double massratio = particleMass/electron_mass_c2 ;
322  G4double massratio2 = massratio*massratio ;
323  G4double cross = 0.;
324 
325  G4double c3 = 0.75*sqrte*particleMass;
326  if (residEnergy <= c3*z13) { return cross; }
327 
328  G4double c7 = 4.*CLHEP::electron_mass_c2;
329  G4double c8 = 6.*particleMass*particleMass;
330  G4double alf = c7/pairEnergy;
331  G4double a3 = 1. - alf;
332  if (a3 <= 0.) { return cross; }
333 
334  // zeta calculation
335  G4double bbb,g1,g2;
336  if( Z < 1.5 ) { bbb = bbbh ; g1 = g1h ; g2 = g2h ; }
337  else { bbb = bbbtf; g1 = g1tf; g2 = g2tf; }
338 
339  G4double zeta = 0;
340  G4double zeta1 =
341  0.073*G4Log(totalEnergy/(particleMass+g1*z23*totalEnergy))-0.26;
342  if ( zeta1 > 0.)
343  {
344  G4double zeta2 =
345  0.058*G4Log(totalEnergy/(particleMass+g2*z13*totalEnergy))-0.14;
346  zeta = zeta1/zeta2 ;
347  }
348 
349  G4double z2 = Z*(Z+zeta);
350  G4double screen0 = 2.*electron_mass_c2*sqrte*bbb/(z13*pairEnergy);
351  G4double a0 = totalEnergy*residEnergy;
352  G4double a1 = pairEnergy*pairEnergy/a0;
353  G4double bet = 0.5*a1;
354  G4double xi0 = 0.25*massratio2*a1;
355  G4double del = c8/a0;
356 
357  G4double rta3 = sqrt(a3);
358  G4double tmnexp = alf/(1. + rta3) + del*rta3;
359  if(tmnexp >= 1.0) { return cross; }
360 
361  G4double tmn = G4Log(tmnexp);
362  G4double sum = 0.;
363 
364  // Gaussian integration in ln(1-ro) ( with 8 points)
365  for (G4int i=0; i<8; ++i)
366  {
367  G4double a4 = G4Exp(tmn*xgi[i]); // a4 = (1.-asymmetry)
368  G4double a5 = a4*(2.-a4) ;
369  G4double a6 = 1.-a5 ;
370  G4double a7 = 1.+a6 ;
371  G4double a9 = 3.+a6 ;
372  G4double xi = xi0*a5 ;
373  G4double xii = 1./xi ;
374  G4double xi1 = 1.+xi ;
375  G4double screen = screen0*xi1/a5 ;
376  G4double yeu = 5.-a6+4.*bet*a7 ;
377  G4double yed = 2.*(1.+3.*bet)*G4Log(3.+xii)-a6-a1*(2.-a6) ;
378  G4double ye1 = 1.+yeu/yed ;
379  G4double ale = G4Log(bbb/z13*sqrt(xi1*ye1)/(1.+screen*ye1)) ;
380  G4double cre = 0.5*G4Log(1.+2.25*z23*xi1*ye1/massratio2) ;
381  G4double be;
382 
383  if (xi <= 1.e3) {
384  be = ((2.+a6)*(1.+bet)+xi*a9)*G4Log(1.+xii)+(a5-bet)/xi1-a9;
385  } else {
386  be = (3.-a6+a1*a7)/(2.*xi);
387  }
388  G4double fe = (ale-cre)*be;
389  if ( fe < 0.) fe = 0. ;
390 
391  G4double ymu = 4.+a6 +3.*bet*a7 ;
392  G4double ymd = a7*(1.5+a1)*G4Log(3.+xi)+1.-1.5*a6 ;
393  G4double ym1 = 1.+ymu/ymd ;
394  G4double alm_crm = G4Log(bbb*massratio/(1.5*z23*(1.+screen*ym1)));
395  G4double a10,bm;
396  if ( xi >= 1.e-3)
397  {
398  a10 = (1.+a1)*a5 ;
399  bm = (a7*(1.+1.5*bet)-a10*xii)*G4Log(xi1)+xi*(a5-bet)/xi1+a10;
400  } else {
401  bm = (5.-a6+bet*a9)*(xi/2.);
402  }
403 
404  G4double fm = alm_crm*bm;
405  if ( fm < 0.) { fm = 0.; }
406 
407  sum += wgi[i]*a4*(fe+fm/massratio2);
408  }
409 
410  cross = -tmn*sum*factorForCross*z2*residEnergy/(totalEnergy*pairEnergy);
411  if(cross < 0.0) { cross = 0.0; }
412  return cross;
413 }
414 
415 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
416 
418  const G4ParticleDefinition*,
419  G4double kineticEnergy,
420  G4double Z, G4double,
421  G4double cutEnergy,
422  G4double maxEnergy)
423 {
424  G4double cross = 0.0;
425  if (kineticEnergy <= lowestKinEnergy) { return cross; }
426 
427  G4double maxPairEnergy = MaxSecondaryEnergyForElement(kineticEnergy, Z);
428  G4double tmax = std::min(maxEnergy, maxPairEnergy);
429  G4double cut = std::max(cutEnergy, minPairEnergy);
430  if (cut >= tmax) { return cross; }
431 
432  cross = ComputeMicroscopicCrossSection(kineticEnergy, Z, cut);
433  if(tmax < kineticEnergy) {
434  cross -= ComputeMicroscopicCrossSection(kineticEnergy, Z, tmax);
435  }
436  return cross;
437 }
438 
439 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
440 
442 {
443  G4double factore = G4Exp(G4Log(emax/emin)/G4double(nbine));
444 
445  for (G4int iz=0; iz<nzdat; ++iz) {
446 
447  G4double Z = zdat[iz];
449  G4double kinEnergy = emin;
450 
451  for (size_t it=0; it<=nbine; ++it) {
452 
453  pv->PutY(it, G4Log(kinEnergy/MeV));
454  G4double maxPairEnergy = MaxSecondaryEnergyForElement(kinEnergy, Z);
455  /*
456  G4cout << "it= " << it << " E= " << kinEnergy
457  << " " << particle->GetParticleName()
458  << " maxE= " << maxPairEnergy << " minE= " << minPairEnergy
459  << " ymin= " << ymin << G4endl;
460  */
461  G4double coef = G4Log(minPairEnergy/kinEnergy)/ymin;
462  G4double ymax = G4Log(maxPairEnergy/kinEnergy)/coef;
463  G4double fac = (ymax - ymin)/dy;
464  size_t imax = (size_t)fac;
465  fac -= (G4double)imax;
466 
467  G4double xSec = 0.0;
468  G4double x = ymin;
469  /*
470  G4cout << "Z= " << currentZ << " z13= " << z13
471  << " mE= " << maxPairEnergy << " ymin= " << ymin
472  << " dy= " << dy << " c= " << coef << G4endl;
473  */
474  // start from zero
475  pv->PutValue(0, it, 0.0);
476  if(0 == it) { pv->PutX(nbiny, 0.0); }
477 
478  for (size_t i=0; i<nbiny; ++i) {
479 
480  if(0 == it) { pv->PutX(i, x); }
481 
482  if(i < imax) {
483  G4double ep = kinEnergy*G4Exp(coef*(x + dy*0.5));
484 
485  // not multiplied by interval, because table
486  // will be used only for sampling
487  //G4cout << "i= " << i << " x= " << x << "E= " << kinEnergy
488  // << " Egamma= " << ep << G4endl;
489  xSec += ep*ComputeDMicroscopicCrossSection(kinEnergy, Z, ep);
490 
491  // last bin before the kinematic limit
492  } else if(i == imax) {
493  G4double ep = kinEnergy*G4Exp(coef*(x + fac*dy*0.5));
494  xSec += ep*fac*ComputeDMicroscopicCrossSection(kinEnergy, Z, ep);
495  }
496  pv->PutValue(i + 1, it, xSec);
497  x += dy;
498  }
499  kinEnergy *= factore;
500 
501  // to avoid precision lost
502  if(it+1 == nbine) { kinEnergy = emax; }
503  }
505  }
506 }
507 
508 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
509 
511  std::vector<G4DynamicParticle*>* vdp,
512  const G4MaterialCutsCouple* couple,
513  const G4DynamicParticle* aDynamicParticle,
514  G4double tmin,
515  G4double tmax)
516 {
517  G4double kineticEnergy = aDynamicParticle->GetKineticEnergy();
518  //G4cout << "------- G4MuPairProductionModel::SampleSecondaries E(MeV)= "
519  // << kineticEnergy << " "
520  // << aDynamicParticle->GetDefinition()->GetParticleName() << G4endl;
521  G4double totalEnergy = kineticEnergy + particleMass;
522  G4double totalMomentum =
523  sqrt(kineticEnergy*(kineticEnergy + 2.0*particleMass));
524 
525  G4ThreeVector partDirection = aDynamicParticle->GetMomentumDirection();
526 
527  // select randomly one element constituing the material
528  const G4Element* anElement = SelectRandomAtom(couple,particle,kineticEnergy);
529 
530  // define interval of energy transfer
531  G4double maxPairEnergy = MaxSecondaryEnergyForElement(kineticEnergy,
532  anElement->GetZ());
533  G4double maxEnergy = std::min(tmax, maxPairEnergy);
534  G4double minEnergy = std::max(tmin, minPairEnergy);
535 
536  if(minEnergy >= maxEnergy) { return; }
537  //G4cout << "emin= " << minEnergy << " emax= " << maxEnergy
538  // << " minPair= " << minPairEnergy << " maxpair= " << maxPairEnergy
539  // << " ymin= " << ymin << " dy= " << dy << G4endl;
540 
541  G4double coeff = G4Log(minPairEnergy/kineticEnergy)/ymin;
542 
543  // compute limits
544  G4double yymin = G4Log(minEnergy/kineticEnergy)/coeff;
545  G4double yymax = G4Log(maxEnergy/kineticEnergy)/coeff;
546 
547  //G4cout << "yymin= " << yymin << " yymax= " << yymax << G4endl;
548 
549  // units should not be used, bacause table was built without
550  G4double logTkin = G4Log(kineticEnergy/MeV);
551 
552  // sample e-e+ energy, pair energy first
553 
554  // select sample table via Z
555  G4int iz1(0), iz2(0);
556  for(G4int iz=0; iz<nzdat; ++iz) {
557  if(currentZ == zdat[iz]) {
558  iz1 = iz2 = currentZ;
559  break;
560  } else if(currentZ < zdat[iz]) {
561  iz2 = zdat[iz];
562  if(iz > 0) { iz1 = zdat[iz-1]; }
563  else { iz1 = iz2; }
564  break;
565  }
566  }
567  if(0 == iz1) { iz1 = iz2 = zdat[nzdat-1]; }
568 
569  G4double PairEnergy = 0.0;
570  G4int count = 0;
571  //G4cout << "start loop Z1= " << iz1 << " Z2= " << iz2 << G4endl;
572  do {
573  ++count;
574  // sampling using only one random number
575  G4double rand = G4UniformRand();
576 
577  G4double x = FindScaledEnergy(iz1, rand, logTkin, yymin, yymax);
578  if(iz1 != iz2) {
579  G4double x2 = FindScaledEnergy(iz2, rand, logTkin, yymin, yymax);
580  G4double lz1= nist->GetLOGZ(iz1);
581  G4double lz2= nist->GetLOGZ(iz2);
582  //G4cout << count << ". x= " << x << " x2= " << x2
583  // << " Z1= " << iz1 << " Z2= " << iz2 << G4endl;
584  x += (x2 - x)*(lnZ - lz1)/(lz2 - lz1);
585  }
586  //G4cout << "x= " << x << " coeff= " << coeff << G4endl;
587  PairEnergy = kineticEnergy*G4Exp(x*coeff);
588 
589  // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
590  } while((PairEnergy < minEnergy || PairEnergy > maxEnergy) && 10 > count);
591 
592  //G4cout << "## PairEnergy(GeV)= " << PairEnergy/GeV
593  // << " Etot(GeV)= " << totalEnergy/GeV << G4endl;
594 
595  // sample r=(E+-E-)/PairEnergy ( uniformly .....)
596  G4double rmax =
597  (1.-6.*particleMass*particleMass/(totalEnergy*(totalEnergy-PairEnergy)))
598  *sqrt(1.-minPairEnergy/PairEnergy);
599  G4double r = rmax * (-1.+2.*G4UniformRand()) ;
600 
601  // compute energies from PairEnergy,r
602  G4double ElectronEnergy = (1.-r)*PairEnergy*0.5;
603  G4double PositronEnergy = PairEnergy - ElectronEnergy;
604 
605  // The angle of the emitted virtual photon is sampled
606  // according to the muon bremsstrahlung model
607 
608  G4double gam = totalEnergy/particleMass;
609  G4double gmax = gam*std::min(1.0, totalEnergy/PairEnergy - 1.0);
610  G4double gmax2= gmax*gmax;
611  G4double x = G4UniformRand()*gmax2/(1.0 + gmax2);
612 
613  G4double theta = sqrt(x/(1.0 - x))/gam;
614  G4double sint = sin(theta);
615  G4double phi = twopi * G4UniformRand() ;
616  G4double dirx = sint*cos(phi), diry = sint*sin(phi), dirz = cos(theta) ;
617 
618  G4ThreeVector gDirection(dirx, diry, dirz);
619  gDirection.rotateUz(partDirection);
620 
621  // the angles of e- and e+ assumed to be the same as virtual gamma
622 
623  // create G4DynamicParticle object for the particle1
624  G4DynamicParticle* aParticle1 =
625  new G4DynamicParticle(theElectron, gDirection,
626  ElectronEnergy - electron_mass_c2);
627 
628  // create G4DynamicParticle object for the particle2
629  G4DynamicParticle* aParticle2 =
630  new G4DynamicParticle(thePositron, gDirection,
631  PositronEnergy - electron_mass_c2);
632 
633  // primary change
634  kineticEnergy -= (ElectronEnergy + PositronEnergy);
636 
637  partDirection *= totalMomentum;
638  partDirection -= (aParticle1->GetMomentum() + aParticle2->GetMomentum());
639  partDirection = partDirection.unit();
641 
642  // add secondary
643  vdp->push_back(aParticle1);
644  vdp->push_back(aParticle2);
645  //G4cout << "-- G4MuPairProductionModel::SampleSecondaries done" << G4endl;
646 }
647 
648 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
649 
651 {
653  ed << "G4ElementData is not properly initialized Z= " << Z
654  << " Ekin(MeV)= " << G4Exp(logTkin)
655  << " IsMasterThread= " << IsMaster()
656  << " Model " << GetName();
657  G4Exception("G4MuPairProductionModel::()","em0033",FatalException,
658  ed,"");
659 }
660 
661 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
662 
663 
const G4double a0
G4double MaxSecondaryEnergyForElement(G4double kineticEnergy, G4double Z)
void DataCorrupted(G4int Z, G4double logTkin)
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:641
static const double MeV
Definition: G4SIunits.hh:211
static const G4double xgi[8]
G4ParticleChangeForLoss * GetParticleChangeForLoss()
Definition: G4VEmModel.cc:120
G4ParticleDefinition * thePositron
std::vector< G4Element * > G4ElementVector
std::ostringstream G4ExceptionDescription
Definition: globals.hh:76
G4double GetKineticEnergy() const
G4MuPairProductionModel(const G4ParticleDefinition *p=0, const G4String &nam="muPairProd")
CLHEP::Hep3Vector G4ThreeVector
void InitialiseElementSelectors(const G4ParticleDefinition *, const G4DataVector &)
Definition: G4VEmModel.cc:148
const G4ParticleDefinition * particle
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:634
G4ParticleDefinition * theElectron
static const G4double a1
G4double GetZ() const
Definition: G4Element.hh:131
static const G4double adat[5]
static const G4double a4
G4bool IsMaster() const
Definition: G4VEmModel.hh:718
void SetParticle(const G4ParticleDefinition *)
G4ElementData * GetElementData()
Definition: G4VEmModel.hh:819
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:190
int G4int
Definition: G4Types.hh:78
static G4NistManager * Instance()
virtual G4double ComputeDEDXPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy)
G4ParticleChangeForLoss * fParticleChange
G4double ComputMuPairLoss(G4double Z, G4double tkin, G4double cut, G4double tmax)
G4double FindScaledEnergy(G4int Z, G4double rand, G4double logTkin, G4double yymin, G4double yymax)
void PutValue(size_t idx, size_t idy, G4double value)
G4double ComputeMicroscopicCrossSection(G4double tkin, G4double Z, G4double cut)
void InitialiseForElement(G4int Z, G4PhysicsVector *v)
#define G4UniformRand()
Definition: Randomize.hh:97
static const G4double sqrte
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kineticEnergy, G4double Z, G4double A, G4double cutEnergy, G4double maxEnergy)
virtual void InitialiseLocal(const G4ParticleDefinition *, G4VEmModel *masterModel)
const G4ThreeVector & GetMomentumDirection() const
G4double iz
Definition: TRTMaterials.hh:39
static const G4double c3
static const double twopi
Definition: G4SIunits.hh:75
void SetProposedKineticEnergy(G4double proposedKinEnergy)
static const double GeV
Definition: G4SIunits.hh:214
std::vector< G4EmElementSelector * > * GetElementSelectors()
Definition: G4VEmModel.hh:802
void SetProposedMomentumDirection(const G4ThreeVector &dir)
const G4double * GetAtomicNumDensityVector() const
Definition: G4Material.hh:216
static const G4double a3
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
G4double G4Log(G4double x)
Definition: G4Log.hh:230
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
virtual G4double MinPrimaryEnergy(const G4Material *, const G4ParticleDefinition *, G4double)
static G4Positron * Positron()
Definition: G4Positron.cc:94
void SetElementSelectors(std::vector< G4EmElementSelector * > *)
Definition: G4VEmModel.hh:810
G4double GetPDGMass() const
static const double pi
Definition: G4SIunits.hh:74
void PutX(size_t idx, G4double value)
T max(const T t1, const T t2)
brief Return the largest of the two arguments
virtual G4double ComputeDMicroscopicCrossSection(G4double tkin, G4double Z, G4double pairEnergy)
const G4double x[NPOINTSGL]
T min(const T t1, const T t2)
brief Return the smallest of the two arguments
static const G4double wgi[8]
G4double GetLOGZ(G4int Z)
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
static G4Electron * Electron()
Definition: G4Electron.cc:94
static const G4double fac
const G4String & GetName() const
Definition: G4VEmModel.hh:795
static const double TeV
Definition: G4SIunits.hh:215
size_t GetNumberOfElements() const
Definition: G4Material.hh:186
static const G4int imax
static const G4double a5
double G4double
Definition: G4Types.hh:76
static const G4double e3
void PutY(size_t idy, G4double value)
G4ElementData * fElementData
Definition: G4VEmModel.hh:421
const G4Element * SelectRandomAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
Definition: G4VEmModel.hh:544
G4ThreeVector GetMomentum() const
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
G4fissionEvent * fe