Geant4  10.02.p01
G4ComponentGGHadronNucleusXsc.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // author: V. Grichine
27 //
28 // 25.04.12 V. Grichine - first implementation
29 
31 
32 #include "G4PhysicalConstants.hh"
33 #include "G4SystemOfUnits.hh"
34 #include "G4ParticleTable.hh"
35 #include "G4IonTable.hh"
36 #include "G4ParticleDefinition.hh"
37 #include "G4DynamicParticle.hh"
38 #include "G4HadronNucleonXsc.hh"
39 #include "G4Log.hh"
40 #include "G4Exp.hh"
41 #include "G4Pow.hh"
42 
44 //
45 
47  : G4VComponentCrossSection(Default_Name()),
48 // fUpperLimit(100000*GeV),
49  fLowerLimit(10.*MeV),// fLowerLimit(3*GeV),
50  fRadiusConst(1.08*fermi), // 1.1, 1.3 ?
51  fTotalXsc(0.0), fElasticXsc(0.0), fInelasticXsc(0.0), fProductionXsc(0.0),
52  fDiffractionXsc(0.0)
53 // , fHadronNucleonXsc(0.0)
54 {
83  theA = G4Alpha::Alpha();
84  theHe3 = G4He3::He3();
85 
86  hnXsc = new G4HadronNucleonXsc();
87 }
88 
90 //
91 //
92 
94 {
95  if (hnXsc) delete hnXsc;
96 }
97 
99 
101  G4double kinEnergy,
102  G4int Z, G4int A)
103 {
104  G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.),
105  kinEnergy);
106  fTotalXsc = GetIsoCrossSection(aDP, Z, A);
107  delete aDP;
108 
109  return fTotalXsc;
110 }
111 
113 
115  G4double kinEnergy,
116  G4int Z, G4double A)
117 {
118  G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.),
119  kinEnergy);
120  fTotalXsc = GetIsoCrossSection(aDP, Z, G4int(A));
121  delete aDP;
122 
123  return fTotalXsc;
124 }
125 
127 
129  G4double kinEnergy,
130  G4int Z, G4int A)
131 {
132  G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.),
133  kinEnergy);
134  fTotalXsc = GetIsoCrossSection(aDP, Z, A);
135  delete aDP;
136 
137  return fInelasticXsc;
138 }
139 
141 
143  G4double kinEnergy,
144  G4int Z, G4int A)
145 {
146  G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.),
147  kinEnergy);
148  fTotalXsc = GetIsoCrossSection(aDP, Z, A);
149  delete aDP;
150 
151  return fProductionXsc;
152 }
153 
155 
157  G4double kinEnergy,
158  G4int Z, G4double A)
159 {
160  G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.),
161  kinEnergy);
162  fTotalXsc = GetIsoCrossSection(aDP, Z, G4int(A));
163  delete aDP;
164 
165  return fInelasticXsc;
166 }
167 
169 
171  G4double kinEnergy,
172  G4int Z, G4double A)
173 {
174  G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.),
175  kinEnergy);
176  fTotalXsc = GetIsoCrossSection(aDP, Z, G4int(A));
177  delete aDP;
178 
179  return fProductionXsc;
180 }
181 
183 
185  G4double kinEnergy,
186  G4int Z, G4double A)
187 {
188  G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.),
189  kinEnergy);
190  fTotalXsc = GetIsoCrossSection(aDP, Z, G4int(A));
191  delete aDP;
192 
193  return fElasticXsc;
194 }
195 
197 
199  G4double kinEnergy,
200  G4int Z, G4int A)
201 {
202  G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.),
203  kinEnergy);
204  fTotalXsc = GetIsoCrossSection(aDP, Z, A);
205  delete aDP;
206 
207  return fElasticXsc;
208 }
209 
211 
213  G4double kinEnergy,
214  G4int Z, G4int A)
215 {
216  G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.),
217  kinEnergy);
218  fTotalXsc = GetIsoCrossSection(aDP, Z, A);
219  delete aDP;
220  G4double ratio = 0.;
221 
222  if(fInelasticXsc > 0.)
223  {
225  if(ratio < 0.) ratio = 0.;
226  }
227  return ratio;
228 }
229 
230 
231 
232 
234 
235 G4bool
237  G4int Z, G4int /*A*/,
238  const G4Element*,
239  const G4Material*)
240 {
241  G4bool applicable = false;
242  // G4int baryonNumber = aDP->GetDefinition()->GetBaryonNumber();
243  G4double kineticEnergy = aDP->GetKineticEnergy();
244 
245  const G4ParticleDefinition* theParticle = aDP->GetDefinition();
246 
247  if (
248  Z >= 1 // >= H for kaons
249  &&
250  (
251  kineticEnergy >= fLowerLimit
252  &&
253  // Z > 1 && // >= He
254  (
255  theParticle == theAProton ||
256  theParticle == theGamma ||
257  theParticle == theSMinus ||
258  theParticle == theProton ||
259  theParticle == theNeutron ||
260  theParticle == thePiPlus ||
261  theParticle == thePiMinus
262  )
263  )
264  )
265  applicable = true;
266 
267  if (
268  Z >= 1 // >= H for kaons
269  &&
270  (
271  kineticEnergy >= 0.01*fLowerLimit
272  &&
273  (
274  theParticle == theKPlus ||
275  theParticle == theKMinus ||
276  theParticle == theK0L ||
277  theParticle == theK0S
278  )
279  )
280  )
281  applicable = true;
282 
283  return applicable;
284 }
285 
287 //
288 // Calculates total and inelastic Xsc, derives elastic as total - inelastic accordong to
289 // Glauber model with Gribov correction calculated in the dipole approximation on
290 // light cone. Gaussian density of point-like nucleons helps to calculate rest integrals of the model.
291 // [1] B.Z. Kopeliovich, nucl-th/0306044 + simplification above
292 
293 G4double
295  G4int Z, G4int A,
296  const G4Isotope*,
297  const G4Element*,
298  const G4Material*)
299 {
300  G4double xsection, sigma, cofInelastic, cofTotal, nucleusSquare, ratio;
301  G4double hpInXsc(0.), hnInXsc(0.);
302  G4double R = GetNucleusRadius(A);
303 
304  G4int N = A - Z; // number of neutrons
305  if (N < 0) N = 0;
306 
307  const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
308 
309  if( theParticle == theProton ||
310  theParticle == theNeutron ||
311  theParticle == thePiPlus ||
312  theParticle == thePiMinus )
313  {
314  // sigma = GetHadronNucleonXscNS(aParticle, A, Z);
315 
316  sigma = Z*hnXsc->GetHadronNucleonXscNS(aParticle, theProton);
317 
318  hpInXsc = hnXsc->GetInelasticHadronNucleonXsc();
319 
320  sigma += N*hnXsc->GetHadronNucleonXscNS(aParticle, theNeutron);
321 
322  hnInXsc = hnXsc->GetInelasticHadronNucleonXsc();
323 
324  cofInelastic = 2.4;
325  cofTotal = 2.0;
326  }
327  else if( theParticle == theKPlus ||
328  theParticle == theKMinus ||
329  theParticle == theK0S ||
330  theParticle == theK0L )
331  {
332  // sigma = GetKaonNucleonXscVector(aParticle, A, Z);
333 
334  sigma = Z*hnXsc->GetKaonNucleonXscGG(aParticle, theProton);
335 
336  hpInXsc = hnXsc->GetInelasticHadronNucleonXsc();
337 
338  sigma += N*hnXsc->GetKaonNucleonXscGG(aParticle, theNeutron);
339 
340  hnInXsc = hnXsc->GetInelasticHadronNucleonXsc();
341 
342  cofInelastic = 2.2;
343  cofTotal = 2.0;
344  R = 1.3*fermi;
345  R *= G4Pow::GetInstance()->powA(G4double(A), 0.3333);
346  }
347  else
348  {
349  sigma = GetHadronNucleonXscNS(aParticle, A, Z);
350  cofInelastic = 2.2;
351  cofTotal = 2.0;
352  }
353  // cofInelastic = 2.0;
354 
355  if( A > 1 )
356  {
357  nucleusSquare = cofTotal*pi*R*R; // basically 2piRR
358  ratio = sigma/nucleusSquare;
359 
360  xsection = nucleusSquare*G4Log( 1. + ratio );
361 
362  xsection *= GetParticleBarCorTot(theParticle, Z);
363 
364  fTotalXsc = xsection;
365 
366 
367 
368  fInelasticXsc = nucleusSquare*G4Log( 1. + cofInelastic*ratio )/cofInelastic;
369 
370  fInelasticXsc *= GetParticleBarCorIn(theParticle, Z);
371 
373 
374  if(fElasticXsc < 0.) fElasticXsc = 0.;
375 
376  G4double difratio = ratio/(1.+ratio);
377 
378  fDiffractionXsc = 0.5*nucleusSquare*( difratio - G4Log( 1. + difratio ) );
379 
380 
381  // sigma = GetHNinelasticXsc(aParticle, A, Z);
382 
383  sigma = Z*hpInXsc + N*hnInXsc;
384 
385  ratio = sigma/nucleusSquare;
386 
387  fProductionXsc = nucleusSquare*G4Log( 1. + cofInelastic*ratio )/cofInelastic;
388 
389  fProductionXsc *= GetParticleBarCorIn(theParticle, Z);
390 
391  if (fElasticXsc < 0.) fElasticXsc = 0.;
392  }
393  else // H
394  {
395  fTotalXsc = sigma;
396  xsection = sigma;
397 
399 
400  if ( theParticle != theAProton )
401  {
403 
404  // sigma = GetHNinelasticXsc(aParticle, A, Z);
405  // fInelasticXsc = sigma;
406  // fElasticXsc = fTotalXsc - fInelasticXsc;
407  }
408  else if( theParticle == theKPlus ||
409  theParticle == theKMinus ||
410  theParticle == theK0S ||
411  theParticle == theK0L )
412  {
413  fInelasticXsc = hpInXsc;
415  }
416  else
417  {
418  fInelasticXsc = hpInXsc;
420  }
421  if (fElasticXsc < 0.) fElasticXsc = 0.;
422 
423  }
424  return xsection;
425 }
426 
428 //
429 // Return single-diffraction/inelastic cross-section ratio
430 
432 GetRatioSD(const G4DynamicParticle* aParticle, G4int A, G4int Z)
433 {
434  G4double sigma, cofInelastic, cofTotal, nucleusSquare, ratio;
435  G4double R = GetNucleusRadius(A);
436 
437  const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
438 
439  if( theParticle == theProton ||
440  theParticle == theNeutron ||
441  theParticle == thePiPlus ||
442  theParticle == thePiMinus )
443  {
444  sigma = GetHadronNucleonXscNS(aParticle, A, Z);
445  cofInelastic = 2.4;
446  cofTotal = 2.0;
447  }
448  else
449  {
450  sigma = GetHadronNucleonXscNS(aParticle, A, Z);
451  cofInelastic = 2.2;
452  cofTotal = 2.0;
453  }
454  nucleusSquare = cofTotal*pi*R*R; // basically 2piRR
455  ratio = sigma/nucleusSquare;
456 
457  fInelasticXsc = nucleusSquare*G4Log( 1. + cofInelastic*ratio )/cofInelastic;
458 
459  G4double difratio = ratio/(1.+ratio);
460 
461  fDiffractionXsc = 0.5*nucleusSquare*( difratio - G4Log( 1. + difratio ) );
462 
463  if (fInelasticXsc > 0.) ratio = fDiffractionXsc/fInelasticXsc;
464  else ratio = 0.;
465 
466  return ratio;
467 }
468 
470 //
471 // Return suasi-elastic/inelastic cross-section ratio
472 
474 GetRatioQE(const G4DynamicParticle* aParticle, G4int A, G4int Z)
475 {
476  G4double sigma, cofInelastic, cofTotal, nucleusSquare, ratio;
477  G4double R = GetNucleusRadius(A);
478 
479  const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
480 
481  if( theParticle == theProton ||
482  theParticle == theNeutron ||
483  theParticle == thePiPlus ||
484  theParticle == thePiMinus )
485  {
486  sigma = GetHadronNucleonXscNS(aParticle, A, Z);
487  cofInelastic = 2.4;
488  cofTotal = 2.0;
489  }
490  else
491  {
492  sigma = GetHadronNucleonXscNS(aParticle, A, Z);
493  cofInelastic = 2.2;
494  cofTotal = 2.0;
495  }
496  nucleusSquare = cofTotal*pi*R*R; // basically 2piRR
497  ratio = sigma/nucleusSquare;
498 
499  fInelasticXsc = nucleusSquare*G4Log( 1. + cofInelastic*ratio )/cofInelastic;
500 
501  sigma = GetHNinelasticXsc(aParticle, A, Z);
502  ratio = sigma/nucleusSquare;
503 
504  fProductionXsc = nucleusSquare*G4Log( 1. + cofInelastic*ratio )/cofInelastic;
505 
507  else ratio = 0.;
508  if ( ratio < 0. ) ratio = 0.;
509 
510  return ratio;
511 }
512 
514 //
515 // Returns hadron-nucleon Xsc according to differnt parametrisations:
516 // [2] E. Levin, hep-ph/9710546
517 // [3] U. Dersch, et al, hep-ex/9910052
518 // [4] M.J. Longo, et al, Phys.Rev.Lett. 33 (1974) 725
519 
520 G4double
522  const G4Element* anElement)
523 {
524  G4int At = G4lrint(anElement->GetN()); // number of nucleons
525  G4int Zt = G4lrint(anElement->GetZ()); // number of protons
526 
527  return GetHadronNucleonXsc(aParticle, At, Zt);
528 }
529 
531 //
532 // Returns hadron-nucleon Xsc according to differnt parametrisations:
533 // [2] E. Levin, hep-ph/9710546
534 // [3] U. Dersch, et al, hep-ex/9910052
535 // [4] M.J. Longo, et al, Phys.Rev.Lett. 33 (1974) 725
536 
537 G4double
539  G4int At, G4int /*Zt*/)
540 {
541  G4double xsection;
542 
543  //G4double targ_mass = G4NucleiProperties::GetNuclearMass(At, Zt);
544 
545  G4double targ_mass = 0.939*GeV; // ~mean neutron and proton ???
546 
547  G4double proj_mass = aParticle->GetMass();
548  G4double proj_momentum = aParticle->GetMomentum().mag();
549  G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum );
550 
551  sMand /= GeV*GeV; // in GeV for parametrisation
552  proj_momentum /= GeV;
553 
554  const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
555 
556  G4double aa = At;
557 
558  if(theParticle == theGamma)
559  {
560  xsection = aa*(0.0677*G4Pow::GetInstance()->powA(sMand,0.0808) + 0.129*G4Pow::GetInstance()->powA(sMand,-0.4525));
561  }
562  else if(theParticle == theNeutron) // as proton ???
563  {
564  xsection = aa*(21.70*G4Pow::GetInstance()->powA(sMand,0.0808) + 56.08*G4Pow::GetInstance()->powA(sMand,-0.4525));
565  }
566  else if(theParticle == theProton)
567  {
568  xsection = aa*(21.70*G4Pow::GetInstance()->powA(sMand,0.0808) + 56.08*G4Pow::GetInstance()->powA(sMand,-0.4525));
569  // xsection = At*( 49.51*G4Pow::GetInstance()->powA(sMand,-0.097) + 0.314*G4Log(sMand)*G4Log(sMand) );
570  // xsection = At*( 38.4 + 0.85*std::abs(G4Pow::GetInstance()->powA(log(sMand),1.47)) );
571  }
572  else if(theParticle == theAProton)
573  {
574  xsection = aa*( 21.70*G4Pow::GetInstance()->powA(sMand,0.0808) + 98.39*G4Pow::GetInstance()->powA(sMand,-0.4525));
575  }
576  else if(theParticle == thePiPlus)
577  {
578  xsection = aa*(13.63*G4Pow::GetInstance()->powA(sMand,0.0808) + 27.56*G4Pow::GetInstance()->powA(sMand,-0.4525));
579  }
580  else if(theParticle == thePiMinus)
581  {
582  // xsection = At*( 55.2*G4Pow::GetInstance()->powA(sMand,-0.255) + 0.346*G4Log(sMand)*G4Log(sMand) );
583  xsection = aa*(13.63*G4Pow::GetInstance()->powA(sMand,0.0808) + 36.02*G4Pow::GetInstance()->powA(sMand,-0.4525));
584  }
585  else if(theParticle == theKPlus)
586  {
587  xsection = aa*(11.82*G4Pow::GetInstance()->powA(sMand,0.0808) + 8.15*G4Pow::GetInstance()->powA(sMand,-0.4525));
588  }
589  else if(theParticle == theKMinus)
590  {
591  xsection = aa*(11.82*G4Pow::GetInstance()->powA(sMand,0.0808) + 26.36*G4Pow::GetInstance()->powA(sMand,-0.4525));
592  }
593  else // as proton ???
594  {
595  xsection = aa*(21.70*G4Pow::GetInstance()->powA(sMand,0.0808) + 56.08*G4Pow::GetInstance()->powA(sMand,-0.4525));
596  }
597  xsection *= millibarn;
598  return xsection;
599 }
600 
601 
603 //
604 // Returns hadron-nucleon Xsc according to PDG parametrisation (2005):
605 // http://pdg.lbl.gov/2006/reviews/hadronicrpp.pdf
606 
607 G4double
609  const G4Element* anElement)
610 {
611  G4int At = G4lrint(anElement->GetN()); // number of nucleons
612  G4int Zt = G4lrint(anElement->GetZ()); // number of protons
613 
614  return GetHadronNucleonXscPDG(aParticle, At, Zt);
615 }
616 
617 
618 
619 
621 //
622 // Returns hadron-nucleon Xsc according to PDG parametrisation (2005):
623 // http://pdg.lbl.gov/2006/reviews/hadronicrpp.pdf
624 // At = number of nucleons, Zt = number of protons
625 
626 G4double
628  G4int At, G4int Zt)
629 {
630  G4double xsection;
631 
632  G4int Nt = At-Zt; // number of neutrons
633  if (Nt < 0) Nt = 0;
634 
635  G4double zz = Zt;
636  G4double aa = At;
637  G4double nn = Nt;
638 
640  GetIonTable()->GetIonMass(Zt, At);
641 
642  targ_mass = 0.939*GeV; // ~mean neutron and proton ???
643 
644  G4double proj_mass = aParticle->GetMass();
645  G4double proj_momentum = aParticle->GetMomentum().mag();
646 
647  G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum );
648 
649  sMand /= GeV*GeV; // in GeV for parametrisation
650 
651  // General PDG fit constants
652 
653  G4double s0 = 5.38*5.38; // in Gev^2
654  G4double eta1 = 0.458;
655  G4double eta2 = 0.458;
656  G4double B = 0.308;
657 
658 
659  const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
660 
661 
662  if(theParticle == theNeutron) // proton-neutron fit
663  {
664  xsection = zz*( 35.80 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.)
665  + 40.15*G4Pow::GetInstance()->powA(sMand,-eta1) - 30.*G4Pow::GetInstance()->powA(sMand,-eta2));
666  xsection += nn*( 35.45 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.)
667  + 42.53*G4Pow::GetInstance()->powA(sMand,-eta1) - 33.34*G4Pow::GetInstance()->powA(sMand,-eta2)); // pp for nn
668  }
669  else if(theParticle == theProton)
670  {
671 
672  xsection = zz*( 35.45 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.)
673  + 42.53*G4Pow::GetInstance()->powA(sMand,-eta1) - 33.34*G4Pow::GetInstance()->powA(sMand,-eta2));
674 
675  xsection += nn*( 35.80 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.)
676  + 40.15*G4Pow::GetInstance()->powA(sMand,-eta1) - 30.*G4Pow::GetInstance()->powA(sMand,-eta2));
677  }
678  else if(theParticle == theAProton)
679  {
680  xsection = zz*( 35.45 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.)
681  + 42.53*G4Pow::GetInstance()->powA(sMand,-eta1) + 33.34*G4Pow::GetInstance()->powA(sMand,-eta2));
682 
683  xsection += nn*( 35.80 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.)
684  + 40.15*G4Pow::GetInstance()->powA(sMand,-eta1) + 30.*G4Pow::GetInstance()->powA(sMand,-eta2));
685  }
686  else if(theParticle == thePiPlus)
687  {
688  xsection = aa*( 20.86 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.)
689  + 19.24*G4Pow::GetInstance()->powA(sMand,-eta1) - 6.03*G4Pow::GetInstance()->powA(sMand,-eta2));
690  }
691  else if(theParticle == thePiMinus)
692  {
693  xsection = aa*( 20.86 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.)
694  + 19.24*G4Pow::GetInstance()->powA(sMand,-eta1) + 6.03*G4Pow::GetInstance()->powA(sMand,-eta2));
695  }
696  else if(theParticle == theKPlus || theParticle == theK0L )
697  {
698  xsection = zz*( 17.91 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.)
699  + 7.14*G4Pow::GetInstance()->powA(sMand,-eta1) - 13.45*G4Pow::GetInstance()->powA(sMand,-eta2));
700 
701  xsection += nn*( 17.87 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.)
702  + 5.17*G4Pow::GetInstance()->powA(sMand,-eta1) - 7.23*G4Pow::GetInstance()->powA(sMand,-eta2));
703  }
704  else if(theParticle == theKMinus || theParticle == theK0S )
705  {
706  xsection = zz*( 17.91 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.)
707  + 7.14*G4Pow::GetInstance()->powA(sMand,-eta1) + 13.45*G4Pow::GetInstance()->powA(sMand,-eta2));
708 
709  xsection += nn*( 17.87 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.)
710  + 5.17*G4Pow::GetInstance()->powA(sMand,-eta1) + 7.23*G4Pow::GetInstance()->powA(sMand,-eta2));
711  }
712  else if(theParticle == theSMinus)
713  {
714  xsection = aa*( 35.20 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.)
715  - 199.*G4Pow::GetInstance()->powA(sMand,-eta1) + 264.*G4Pow::GetInstance()->powA(sMand,-eta2));
716  }
717  else if(theParticle == theGamma) // modify later on
718  {
719  xsection = aa*( 0.0 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.)
720  + 0.032*G4Pow::GetInstance()->powA(sMand,-eta1) - 0.0*G4Pow::GetInstance()->powA(sMand,-eta2));
721 
722  }
723  else // as proton ???
724  {
725  xsection = zz*( 35.45 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.)
726  + 42.53*G4Pow::GetInstance()->powA(sMand,-eta1) - 33.34*G4Pow::GetInstance()->powA(sMand,-eta2));
727 
728  xsection += nn*( 35.80 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.)
729  + 40.15*G4Pow::GetInstance()->powA(sMand,-eta1) - 30.*G4Pow::GetInstance()->powA(sMand,-eta2));
730  }
731  xsection *= millibarn; // parametrised in mb
732  return xsection;
733 }
734 
735 
737 //
738 // Returns hadron-nucleon cross-section based on N. Starkov parametrisation of
739 // data from mainly http://wwwppds.ihep.su:8001/c5-6A.html database
740 
741 G4double
743  const G4Element* anElement)
744 {
745  G4int At = G4lrint(anElement->GetN()); // number of nucleons
746  G4int Zt = G4lrint(anElement->GetZ()); // number of protons
747 
748  return GetHadronNucleonXscNS(aParticle, At, Zt);
749 }
750 
751 
752 
753 
755 //
756 // Returns hadron-nucleon cross-section based on N. Starkov parametrisation of
757 // data from mainly http://wwwppds.ihep.su:8001/c5-6A.html database
758 
759 G4double
761  G4int At, G4int Zt)
762 {
763  G4double xsection(0);
764  // G4double Delta; DHW 19 May 2011: variable set but not used
765  G4double A0, B0;
766  G4double hpXscv(0);
767  G4double hnXscv(0);
768 
769  G4int Nt = At-Zt; // number of neutrons
770  if (Nt < 0) Nt = 0;
771 
772  G4double aa = At;
773  G4double zz = Zt;
774  G4double nn = Nt;
775 
777  GetIonTable()->GetIonMass(Zt, At);
778 
779  targ_mass = 0.939*GeV; // ~mean neutron and proton ???
780 
781  G4double proj_mass = aParticle->GetMass();
782  G4double proj_energy = aParticle->GetTotalEnergy();
783  G4double proj_momentum = aParticle->GetMomentum().mag();
784 
785  G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum );
786 
787  sMand /= GeV*GeV; // in GeV for parametrisation
788  proj_momentum /= GeV;
789  proj_energy /= GeV;
790  proj_mass /= GeV;
791 
792  // General PDG fit constants
793 
794  G4double s0 = 5.38*5.38; // in Gev^2
795  G4double eta1 = 0.458;
796  G4double eta2 = 0.458;
797  G4double B = 0.308;
798 
799 
800  const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
801 
802 
803  if(theParticle == theNeutron)
804  {
805  if( proj_momentum >= 373.)
806  {
807  return GetHadronNucleonXscPDG(aParticle,At,Zt);
808  }
809  else if( proj_momentum >= 10.)
810  // if( proj_momentum >= 2.)
811  {
812  // Delta = 1.; // DHW 19 May 2011: variable set but not used
813  // if( proj_energy < 40. ) Delta = 0.916+0.0021*proj_energy;
814 
815  if(proj_momentum >= 10.)
816  {
817  B0 = 7.5;
818  A0 = 100. - B0*G4Log(3.0e7);
819 
820  xsection = A0 + B0*G4Log(proj_energy) - 11
821  + 103*G4Pow::GetInstance()->powA(2*0.93827*proj_energy + proj_mass*proj_mass+
822  0.93827*0.93827,-0.165); // mb
823  }
824  xsection *= zz + nn;
825  }
826  else
827  {
828  // nn to be pp
829 
830  if( proj_momentum < 0.73 )
831  {
832  hnXscv = 23 + 50*( G4Pow::GetInstance()->powA( G4Log(0.73/proj_momentum), 3.5 ) );
833  }
834  else if( proj_momentum < 1.05 )
835  {
836  hnXscv = 23 + 40*(G4Log(proj_momentum/0.73))*
837  (G4Log(proj_momentum/0.73));
838  }
839  else // if( proj_momentum < 10. )
840  {
841  hnXscv = 39.0+
842  75*(proj_momentum - 1.2)/(G4Pow::GetInstance()->powA(proj_momentum,3.0) + 0.15);
843  }
844  // pn to be np
845 
846  if( proj_momentum < 0.8 )
847  {
848  hpXscv = 33+30*G4Pow::GetInstance()->powA(G4Log(proj_momentum/1.3),4.0);
849  }
850  else if( proj_momentum < 1.4 )
851  {
852  hpXscv = 33+30*G4Pow::GetInstance()->powA(G4Log(proj_momentum/0.95),2.0);
853  }
854  else // if( proj_momentum < 10. )
855  {
856  hpXscv = 33.3+
857  20.8*(G4Pow::GetInstance()->powA(proj_momentum,2.0)-1.35)/
858  (G4Pow::GetInstance()->powA(proj_momentum,2.50)+0.95);
859  }
860  xsection = hpXscv*zz + hnXscv*nn;
861  }
862  }
863  else if(theParticle == theProton)
864  {
865  if( proj_momentum >= 373.)
866  {
867  return GetHadronNucleonXscPDG(aParticle,At,Zt);
868  }
869  else if( proj_momentum >= 10.)
870  // if( proj_momentum >= 2.)
871  {
872  // Delta = 1.; DHW 19 May 2011: variable set but not used
873  // if( proj_energy < 40. ) Delta = 0.916+0.0021*proj_energy;
874 
875  if(proj_momentum >= 10.)
876  {
877  B0 = 7.5;
878  A0 = 100. - B0*G4Log(3.0e7);
879 
880  xsection = A0 + B0*G4Log(proj_energy) - 11
881  + 103*G4Pow::GetInstance()->powA(2*0.93827*proj_energy + proj_mass*proj_mass+
882  0.93827*0.93827,-0.165); // mb
883  }
884  xsection *= zz + nn;
885  }
886  else
887  {
888  // pp
889 
890  if( proj_momentum < 0.73 )
891  {
892  hpXscv = 23 + 50*( G4Pow::GetInstance()->powA( G4Log(0.73/proj_momentum), 3.5 ) );
893  }
894  else if( proj_momentum < 1.05 )
895  {
896  hpXscv = 23 + 40*(G4Log(proj_momentum/0.73))*
897  (G4Log(proj_momentum/0.73));
898  }
899  else // if( proj_momentum < 10. )
900  {
901  hpXscv = 39.0+
902  75*(proj_momentum - 1.2)/(G4Pow::GetInstance()->powA(proj_momentum,3.0) + 0.15);
903  }
904  // pn to be np
905 
906  if( proj_momentum < 0.8 )
907  {
908  hnXscv = 33+30*G4Pow::GetInstance()->powA(G4Log(proj_momentum/1.3),4.0);
909  }
910  else if( proj_momentum < 1.4 )
911  {
912  hnXscv = 33+30*G4Pow::GetInstance()->powA(G4Log(proj_momentum/0.95),2.0);
913  }
914  else // if( proj_momentum < 10. )
915  {
916  hnXscv = 33.3+
917  20.8*(G4Pow::GetInstance()->powA(proj_momentum,2.0)-1.35)/
918  (G4Pow::GetInstance()->powA(proj_momentum,2.50)+0.95);
919  }
920  xsection = hpXscv*zz + hnXscv*nn;
921  // xsection = hpXscv*(Zt + Nt);
922  // xsection = hnXscv*(Zt + Nt);
923  }
924  // xsection *= 0.95;
925  }
926  else if( theParticle == theAProton )
927  {
928  // xsection = Zt*( 35.45 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.)
929  // + 42.53*G4Pow::GetInstance()->powA(sMand,-eta1) + 33.34*G4Pow::GetInstance()->powA(sMand,-eta2));
930 
931  // xsection += Nt*( 35.80 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.)
932  // + 40.15*G4Pow::GetInstance()->powA(sMand,-eta1) + 30.*G4Pow::GetInstance()->powA(sMand,-eta2));
933 
934  G4double logP = G4Log(proj_momentum);
935 
936  if( proj_momentum <= 1.0 )
937  {
938  xsection = zz*(65.55 + 53.84/(proj_momentum+1.e-6) );
939  }
940  else
941  {
942  xsection = zz*( 41.1 + 77.2*G4Pow::GetInstance()->powA( proj_momentum, -0.68)
943  + 0.293*logP*logP - 1.82*logP );
944  }
945  if ( nn > 0.)
946  {
947  xsection += nn*( 41.9 + 96.2*G4Pow::GetInstance()->powA( proj_momentum, -0.99) - 0.154*logP);
948  }
949  else // H
950  {
951  fInelasticXsc = 38.0 + 38.0*G4Pow::GetInstance()->powA( proj_momentum, -0.96)
952  - 0.169*logP*logP;
954  }
955  }
956  else if( theParticle == thePiPlus )
957  {
958  if(proj_momentum < 0.4)
959  {
960  G4double Ex3 = 180*G4Exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.085/0.085);
961  hpXscv = Ex3+20.0;
962  }
963  else if( proj_momentum < 1.15 )
964  {
965  G4double Ex4 = 88*(G4Log(proj_momentum/0.75))*(G4Log(proj_momentum/0.75));
966  hpXscv = Ex4+14.0;
967  }
968  else if(proj_momentum < 3.5)
969  {
970  G4double Ex1 = 3.2*G4Exp(-(proj_momentum-2.55)*(proj_momentum-2.55)/0.55/0.55);
971  G4double Ex2 = 12*G4Exp(-(proj_momentum-1.47)*(proj_momentum-1.47)/0.225/0.225);
972  hpXscv = Ex1+Ex2+27.5;
973  }
974  else // if(proj_momentum > 3.5) // mb
975  {
976  hpXscv = 10.6+2.*G4Log(proj_energy)+25*G4Pow::GetInstance()->powA(proj_energy,-0.43);
977  }
978  // pi+n = pi-p??
979 
980  if(proj_momentum < 0.37)
981  {
982  hnXscv = 28.0 + 40*G4Exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.07/0.07);
983  }
984  else if(proj_momentum<0.65)
985  {
986  hnXscv = 26+110*(G4Log(proj_momentum/0.48))*(G4Log(proj_momentum/0.48));
987  }
988  else if(proj_momentum<1.3)
989  {
990  hnXscv = 36.1+
991  10*G4Exp(-(proj_momentum-0.72)*(proj_momentum-0.72)/0.06/0.06)+
992  24*G4Exp(-(proj_momentum-1.015)*(proj_momentum-1.015)/0.075/0.075);
993  }
994  else if(proj_momentum<3.0)
995  {
996  hnXscv = 36.1+0.079-4.313*G4Log(proj_momentum)+
997  3*G4Exp(-(proj_momentum-2.1)*(proj_momentum-2.1)/0.4/0.4)+
998  1.5*G4Exp(-(proj_momentum-1.4)*(proj_momentum-1.4)/0.12/0.12);
999  }
1000  else // mb
1001  {
1002  hnXscv = 10.6+2*G4Log(proj_energy)+30*G4Pow::GetInstance()->powA(proj_energy,-0.43);
1003  }
1004  xsection = hpXscv*zz + hnXscv*nn;
1005  }
1006  else if(theParticle == thePiMinus)
1007  {
1008  // pi-n = pi+p??
1009 
1010  if(proj_momentum < 0.4)
1011  {
1012  G4double Ex3 = 180*G4Exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.085/0.085);
1013  hnXscv = Ex3+20.0;
1014  }
1015  else if(proj_momentum < 1.15)
1016  {
1017  G4double Ex4 = 88*(G4Log(proj_momentum/0.75))*(G4Log(proj_momentum/0.75));
1018  hnXscv = Ex4+14.0;
1019  }
1020  else if(proj_momentum < 3.5)
1021  {
1022  G4double Ex1 = 3.2*G4Exp(-(proj_momentum-2.55)*(proj_momentum-2.55)/0.55/0.55);
1023  G4double Ex2 = 12*G4Exp(-(proj_momentum-1.47)*(proj_momentum-1.47)/0.225/0.225);
1024  hnXscv = Ex1+Ex2+27.5;
1025  }
1026  else // if(proj_momentum > 3.5) // mb
1027  {
1028  hnXscv = 10.6+2.*G4Log(proj_energy)+25*G4Pow::GetInstance()->powA(proj_energy,-0.43);
1029  }
1030  // pi-p
1031 
1032  if(proj_momentum < 0.37)
1033  {
1034  hpXscv = 28.0 + 40*G4Exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.07/0.07);
1035  }
1036  else if(proj_momentum<0.65)
1037  {
1038  hpXscv = 26+110*(G4Log(proj_momentum/0.48))*(G4Log(proj_momentum/0.48));
1039  }
1040  else if(proj_momentum<1.3)
1041  {
1042  hpXscv = 36.1+
1043  10*G4Exp(-(proj_momentum-0.72)*(proj_momentum-0.72)/0.06/0.06)+
1044  24*G4Exp(-(proj_momentum-1.015)*(proj_momentum-1.015)/0.075/0.075);
1045  }
1046  else if(proj_momentum<3.0)
1047  {
1048  hpXscv = 36.1+0.079-4.313*G4Log(proj_momentum)+
1049  3*G4Exp(-(proj_momentum-2.1)*(proj_momentum-2.1)/0.4/0.4)+
1050  1.5*G4Exp(-(proj_momentum-1.4)*(proj_momentum-1.4)/0.12/0.12);
1051  }
1052  else // mb
1053  {
1054  hpXscv = 10.6+2*G4Log(proj_energy)+30*G4Pow::GetInstance()->powA(proj_energy,-0.43);
1055  }
1056  xsection = hpXscv*zz + hnXscv*nn;
1057  }
1058  else if(theParticle == theKPlus)
1059  {
1060  xsection = zz*( 17.91 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.)
1061  + 7.14*G4Pow::GetInstance()->powA(sMand,-eta1) - 13.45*G4Pow::GetInstance()->powA(sMand,-eta2));
1062 
1063  xsection += nn*( 17.87 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.)
1064  + 5.17*G4Pow::GetInstance()->powA(sMand,-eta1) - 7.23*G4Pow::GetInstance()->powA(sMand,-eta2));
1065  }
1066  else if(theParticle == theKMinus)
1067  {
1068  xsection = zz*( 17.91 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.)
1069  + 7.14*G4Pow::GetInstance()->powA(sMand,-eta1) + 13.45*G4Pow::GetInstance()->powA(sMand,-eta2));
1070 
1071  xsection += nn*( 17.87 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.)
1072  + 5.17*G4Pow::GetInstance()->powA(sMand,-eta1) + 7.23*G4Pow::GetInstance()->powA(sMand,-eta2));
1073  }
1074  else if(theParticle == theSMinus)
1075  {
1076  xsection = aa*( 35.20 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.)
1077  - 199.*G4Pow::GetInstance()->powA(sMand,-eta1) + 264.*G4Pow::GetInstance()->powA(sMand,-eta2));
1078  }
1079  else if(theParticle == theGamma) // modify later on
1080  {
1081  xsection = aa*( 0.0 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.)
1082  + 0.032*G4Pow::GetInstance()->powA(sMand,-eta1) - 0.0*G4Pow::GetInstance()->powA(sMand,-eta2));
1083 
1084  }
1085  else // as proton ???
1086  {
1087  xsection = zz*( 35.45 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.)
1088  + 42.53*G4Pow::GetInstance()->powA(sMand,-eta1) - 33.34*G4Pow::GetInstance()->powA(sMand,-eta2));
1089 
1090  xsection += nn*( 35.80 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.)
1091  + 40.15*G4Pow::GetInstance()->powA(sMand,-eta1) - 30.*G4Pow::GetInstance()->powA(sMand,-eta2));
1092  }
1093  xsection *= millibarn; // parametrised in mb
1094  return xsection;
1095 }
1096 
1097 /*
1098 G4double
1099 G4ComponentGGHadronNucleusXsc::GetKaonNucleonXscVector(const G4DynamicParticle* aParticle,
1100  G4int At, G4int Zt)
1101 {
1102  G4double Tkin, logTkin, xsc, xscP, xscN;
1103  const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
1104 
1105  G4int Nt = At-Zt; // number of neutrons
1106  if (Nt < 0) Nt = 0;
1107 
1108  Tkin = aParticle->GetKineticEnergy(); // Tkin in MeV
1109 
1110  if( Tkin > 70*GeV ) return GetHadronNucleonXscPDG(aParticle,At,Zt);
1111 
1112  logTkin = G4Log(Tkin); // Tkin in MeV!!!
1113 
1114  if( theParticle == theKPlus )
1115  {
1116  xscP = hnXsc->GetKpProtonTotXscVector(logTkin);
1117  xscN = hnXsc->GetKpNeutronTotXscVector(logTkin);
1118  }
1119  else if( theParticle == theKMinus )
1120  {
1121  xscP = hnXsc->GetKmProtonTotXscVector(logTkin);
1122  xscN = hnXsc->GetKmNeutronTotXscVector(logTkin);
1123  }
1124  else // K-zero as half of K+ and K-
1125  {
1126  xscP = (hnXsc->GetKpProtonTotXscVector(logTkin)+hnXsc->GetKmProtonTotXscVector(logTkin))*0.5;
1127  xscN = (hnXsc->GetKpNeutronTotXscVector(logTkin)+hnXsc->GetKmNeutronTotXscVector(logTkin))*0.5;
1128  }
1129  xsc = xscP*Zt + xscN*Nt;
1130  return xsc;
1131 }
1132 */
1133 
1135 //
1136 // Returns hadron-nucleon inelastic cross-section based on proper parametrisation
1137 
1138 G4double
1140  const G4Element* anElement)
1141 {
1142  G4int At = G4lrint(anElement->GetN()); // number of nucleons
1143  G4int Zt = G4lrint(anElement->GetZ()); // number of protons
1144 
1145  return GetHNinelasticXsc(aParticle, At, Zt);
1146 }
1147 
1149 //
1150 // Returns hadron-nucleon inelastic cross-section based on FTF-parametrisation
1151 
1152 G4double
1154  G4int At, G4int Zt)
1155 {
1156  const G4ParticleDefinition* hadron = aParticle->GetDefinition();
1157  G4double sumInelastic;
1158  G4int Nt = At - Zt;
1159  if(Nt < 0) Nt = 0;
1160 
1161  if( hadron == theKPlus )
1162  {
1163  sumInelastic = GetHNinelasticXscVU(aParticle, At, Zt);
1164  }
1165  else
1166  {
1167  //sumInelastic = Zt*GetHadronNucleonXscMK(aParticle, theProton);
1168  // sumInelastic += Nt*GetHadronNucleonXscMK(aParticle, theNeutron);
1169  sumInelastic = G4double(Zt)*GetHadronNucleonXscNS(aParticle, 1, 1);
1170  sumInelastic += G4double(Nt)*GetHadronNucleonXscNS(aParticle, 1, 0);
1171  }
1172  return sumInelastic;
1173 }
1174 
1175 
1177 //
1178 // Returns hadron-nucleon inelastic cross-section based on FTF-parametrisation
1179 
1180 G4double
1182  G4int At, G4int Zt)
1183 {
1184  G4int PDGcode = aParticle->GetDefinition()->GetPDGEncoding();
1185  G4int absPDGcode = std::abs(PDGcode);
1186 
1187  G4double Elab = aParticle->GetTotalEnergy();
1188  // (s - 2*0.88*GeV*GeV)/(2*0.939*GeV)/GeV;
1189  G4double Plab = aParticle->GetMomentum().mag();
1190  // std::sqrt(Elab * Elab - 0.88);
1191 
1192  Elab /= GeV;
1193  Plab /= GeV;
1194 
1195  G4double LogPlab = G4Log( Plab );
1196  G4double sqrLogPlab = LogPlab * LogPlab;
1197 
1198  //G4cout<<"Plab = "<<Plab<<G4endl;
1199 
1200  G4double NumberOfTargetProtons = G4double(Zt);
1201  G4double NumberOfTargetNucleons = G4double(At);
1202  G4double NumberOfTargetNeutrons = NumberOfTargetNucleons - NumberOfTargetProtons;
1203 
1204  if(NumberOfTargetNeutrons < 0.0) NumberOfTargetNeutrons = 0.0;
1205 
1206  G4double Xtotal, Xelastic, Xinelastic;
1207 
1208  if( absPDGcode > 1000 ) //------Projectile is baryon --------
1209  {
1210  G4double XtotPP = 48.0 + 0. *G4Pow::GetInstance()->powA(Plab, 0. ) +
1211  0.522*sqrLogPlab - 4.51*LogPlab;
1212 
1213  G4double XtotPN = 47.3 + 0. *G4Pow::GetInstance()->powA(Plab, 0. ) +
1214  0.513*sqrLogPlab - 4.27*LogPlab;
1215 
1216  G4double XelPP = 11.9 + 26.9*G4Pow::GetInstance()->powA(Plab,-1.21) +
1217  0.169*sqrLogPlab - 1.85*LogPlab;
1218 
1219  G4double XelPN = 11.9 + 26.9*G4Pow::GetInstance()->powA(Plab,-1.21) +
1220  0.169*sqrLogPlab - 1.85*LogPlab;
1221 
1222  Xtotal = (NumberOfTargetProtons * XtotPP +
1223  NumberOfTargetNeutrons * XtotPN);
1224 
1225  Xelastic = (NumberOfTargetProtons * XelPP +
1226  NumberOfTargetNeutrons * XelPN);
1227  }
1228  else if( PDGcode == 211 ) //------Projectile is PionPlus -------
1229  {
1230  G4double XtotPiP = 16.4 + 19.3 *G4Pow::GetInstance()->powA(Plab,-0.42) +
1231  0.19 *sqrLogPlab - 0.0 *LogPlab;
1232 
1233  G4double XtotPiN = 33.0 + 14.0 *G4Pow::GetInstance()->powA(Plab,-1.36) +
1234  0.456*sqrLogPlab - 4.03*LogPlab;
1235 
1236  G4double XelPiP = 0.0 + 11.4*G4Pow::GetInstance()->powA(Plab,-0.40) +
1237  0.079*sqrLogPlab - 0.0 *LogPlab;
1238 
1239  G4double XelPiN = 1.76 + 11.2*G4Pow::GetInstance()->powA(Plab,-0.64) +
1240  0.043*sqrLogPlab - 0.0 *LogPlab;
1241 
1242  Xtotal = ( NumberOfTargetProtons * XtotPiP +
1243  NumberOfTargetNeutrons * XtotPiN );
1244 
1245  Xelastic = ( NumberOfTargetProtons * XelPiP +
1246  NumberOfTargetNeutrons * XelPiN );
1247  }
1248  else if( PDGcode == -211 ) //------Projectile is PionMinus -------
1249  {
1250  G4double XtotPiP = 33.0 + 14.0 *G4Pow::GetInstance()->powA(Plab,-1.36) +
1251  0.456*sqrLogPlab - 4.03*LogPlab;
1252 
1253  G4double XtotPiN = 16.4 + 19.3 *G4Pow::GetInstance()->powA(Plab,-0.42) +
1254  0.19 *sqrLogPlab - 0.0 *LogPlab;
1255 
1256  G4double XelPiP = 1.76 + 11.2*G4Pow::GetInstance()->powA(Plab,-0.64) +
1257  0.043*sqrLogPlab - 0.0 *LogPlab;
1258 
1259  G4double XelPiN = 0.0 + 11.4*G4Pow::GetInstance()->powA(Plab,-0.40) +
1260  0.079*sqrLogPlab - 0.0 *LogPlab;
1261 
1262  Xtotal = ( NumberOfTargetProtons * XtotPiP +
1263  NumberOfTargetNeutrons * XtotPiN );
1264 
1265  Xelastic = ( NumberOfTargetProtons * XelPiP +
1266  NumberOfTargetNeutrons * XelPiN );
1267  }
1268  else if( PDGcode == 111 ) //------Projectile is PionZero -------
1269  {
1270  G4double XtotPiP =(16.4 + 19.3 *G4Pow::GetInstance()->powA(Plab,-0.42) +
1271  0.19 *sqrLogPlab - 0.0 *LogPlab + //Pi+
1272  33.0 + 14.0 *G4Pow::GetInstance()->powA(Plab,-1.36) +
1273  0.456*sqrLogPlab - 4.03*LogPlab)/2; //Pi-
1274 
1275  G4double XtotPiN =(33.0 + 14.0 *G4Pow::GetInstance()->powA(Plab,-1.36) +
1276  0.456*sqrLogPlab - 4.03*LogPlab + //Pi+
1277  16.4 + 19.3 *G4Pow::GetInstance()->powA(Plab,-0.42) +
1278  0.19 *sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
1279 
1280  G4double XelPiP =( 0.0 + 11.4*G4Pow::GetInstance()->powA(Plab,-0.40) +
1281  0.079*sqrLogPlab - 0.0 *LogPlab + //Pi+
1282  1.76 + 11.2*G4Pow::GetInstance()->powA(Plab,-0.64) +
1283  0.043*sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
1284 
1285  G4double XelPiN =( 1.76 + 11.2*G4Pow::GetInstance()->powA(Plab,-0.64) +
1286  0.043*sqrLogPlab - 0.0 *LogPlab + //Pi+
1287  0.0 + 11.4*G4Pow::GetInstance()->powA(Plab,-0.40) +
1288  0.079*sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
1289 
1290  Xtotal = ( NumberOfTargetProtons * XtotPiP +
1291  NumberOfTargetNeutrons * XtotPiN );
1292 
1293  Xelastic = ( NumberOfTargetProtons * XelPiP +
1294  NumberOfTargetNeutrons * XelPiN );
1295  }
1296  else if( PDGcode == 321 ) //------Projectile is KaonPlus -------
1297  {
1298  G4double XtotKP = 18.1 + 0. *G4Pow::GetInstance()->powA(Plab, 0. ) +
1299  0.26 *sqrLogPlab - 1.0 *LogPlab;
1300  G4double XtotKN = 18.7 + 0. *G4Pow::GetInstance()->powA(Plab, 0. ) +
1301  0.21 *sqrLogPlab - 0.89*LogPlab;
1302 
1303  G4double XelKP = 5.0 + 8.1*G4Pow::GetInstance()->powA(Plab,-1.8 ) +
1304  0.16 *sqrLogPlab - 1.3 *LogPlab;
1305 
1306  G4double XelKN = 7.3 + 0. *G4Pow::GetInstance()->powA(Plab,-0. ) +
1307  0.29 *sqrLogPlab - 2.4 *LogPlab;
1308 
1309  Xtotal = ( NumberOfTargetProtons * XtotKP +
1310  NumberOfTargetNeutrons * XtotKN );
1311 
1312  Xelastic = ( NumberOfTargetProtons * XelKP +
1313  NumberOfTargetNeutrons * XelKN );
1314  }
1315  else if( PDGcode ==-321 ) //------Projectile is KaonMinus ------
1316  {
1317  G4double XtotKP = 32.1 + 0. *G4Pow::GetInstance()->powA(Plab, 0. ) +
1318  0.66 *sqrLogPlab - 5.6 *LogPlab;
1319  G4double XtotKN = 25.2 + 0. *G4Pow::GetInstance()->powA(Plab, 0. ) +
1320  0.38 *sqrLogPlab - 2.9 *LogPlab;
1321 
1322  G4double XelKP = 7.3 + 0. *G4Pow::GetInstance()->powA(Plab,-0. ) +
1323  0.29 *sqrLogPlab - 2.4 *LogPlab;
1324 
1325  G4double XelKN = 5.0 + 8.1*G4Pow::GetInstance()->powA(Plab,-1.8 ) +
1326  0.16 *sqrLogPlab - 1.3 *LogPlab;
1327 
1328  Xtotal = ( NumberOfTargetProtons * XtotKP +
1329  NumberOfTargetNeutrons * XtotKN );
1330 
1331  Xelastic = ( NumberOfTargetProtons * XelKP +
1332  NumberOfTargetNeutrons * XelKN );
1333  }
1334  else if( PDGcode == 311 ) //------Projectile is KaonZero ------
1335  {
1336  G4double XtotKP = ( 18.1 + 0. *G4Pow::GetInstance()->powA(Plab, 0. ) +
1337  0.26 *sqrLogPlab - 1.0 *LogPlab + //K+
1338  32.1 + 0. *G4Pow::GetInstance()->powA(Plab, 0. ) +
1339  0.66 *sqrLogPlab - 5.6 *LogPlab)/2; //K-
1340 
1341  G4double XtotKN = ( 18.7 + 0. *G4Pow::GetInstance()->powA(Plab, 0. ) +
1342  0.21 *sqrLogPlab - 0.89*LogPlab + //K+
1343  25.2 + 0. *G4Pow::GetInstance()->powA(Plab, 0. ) +
1344  0.38 *sqrLogPlab - 2.9 *LogPlab)/2; //K-
1345 
1346  G4double XelKP = ( 5.0 + 8.1*G4Pow::GetInstance()->powA(Plab,-1.8 )
1347  + 0.16 *sqrLogPlab - 1.3 *LogPlab + //K+
1348  7.3 + 0. *G4Pow::GetInstance()->powA(Plab,-0. ) +
1349  0.29 *sqrLogPlab - 2.4 *LogPlab)/2; //K-
1350 
1351  G4double XelKN = ( 7.3 + 0. *G4Pow::GetInstance()->powA(Plab,-0. ) +
1352  0.29 *sqrLogPlab - 2.4 *LogPlab + //K+
1353  5.0 + 8.1*G4Pow::GetInstance()->powA(Plab,-1.8 ) +
1354  0.16 *sqrLogPlab - 1.3 *LogPlab)/2; //K-
1355 
1356  Xtotal = ( NumberOfTargetProtons * XtotKP +
1357  NumberOfTargetNeutrons * XtotKN );
1358 
1359  Xelastic = ( NumberOfTargetProtons * XelKP +
1360  NumberOfTargetNeutrons * XelKN );
1361  }
1362  else //------Projectile is undefined, Nucleon assumed
1363  {
1364  G4double XtotPP = 48.0 + 0. *G4Pow::GetInstance()->powA(Plab, 0. ) +
1365  0.522*sqrLogPlab - 4.51*LogPlab;
1366 
1367  G4double XtotPN = 47.3 + 0. *G4Pow::GetInstance()->powA(Plab, 0. ) +
1368  0.513*sqrLogPlab - 4.27*LogPlab;
1369 
1370  G4double XelPP = 11.9 + 26.9*G4Pow::GetInstance()->powA(Plab,-1.21) +
1371  0.169*sqrLogPlab - 1.85*LogPlab;
1372  G4double XelPN = 11.9 + 26.9*G4Pow::GetInstance()->powA(Plab,-1.21) +
1373  0.169*sqrLogPlab - 1.85*LogPlab;
1374 
1375  Xtotal = ( NumberOfTargetProtons * XtotPP +
1376  NumberOfTargetNeutrons * XtotPN );
1377 
1378  Xelastic = ( NumberOfTargetProtons * XelPP +
1379  NumberOfTargetNeutrons * XelPN );
1380  }
1381  Xinelastic = Xtotal - Xelastic;
1382 
1383  if( Xinelastic < 0.) Xinelastic = 0.;
1384 
1385  return Xinelastic*= millibarn;
1386 }
1387 
1389 //
1390 //
1391 
1392 G4double
1394  const G4Element* anElement)
1395 {
1396  G4int At = G4lrint(anElement->GetN());
1397  G4double oneThird = 1.0/3.0;
1398  G4double cubicrAt = G4Pow::GetInstance()->powA(G4double(At), oneThird);
1399 
1400  G4double R; // = fRadiusConst*cubicrAt;
1401  /*
1402  G4double tmp = G4Pow::GetInstance()->powA( cubicrAt-1., 3.);
1403  tmp += At;
1404  tmp *= 0.5;
1405 
1406  if (At > 20.) // 20.
1407  {
1408  R = fRadiusConst*G4Pow::GetInstance()->powA (tmp, oneThird);
1409  }
1410  else
1411  {
1412  R = fRadiusConst*cubicrAt;
1413  }
1414  */
1415 
1416  R = fRadiusConst*cubicrAt;
1417 
1418  G4double meanA = 21.;
1419 
1420  G4double tauA1 = 40.;
1421  G4double tauA2 = 10.;
1422  G4double tauA3 = 5.;
1423 
1424  G4double a1 = 0.85;
1425  G4double b1 = 1. - a1;
1426 
1427  G4double b2 = 0.3;
1428  G4double b3 = 4.;
1429 
1430  if (At > 20) // 20.
1431  {
1432  R *= ( a1 + b1*G4Exp( -(At - meanA)/tauA1) );
1433  }
1434  else if (At > 3)
1435  {
1436  R *= ( 1.0 + b2*( 1. - G4Exp( (At - meanA)/tauA2) ) );
1437  }
1438  else
1439  {
1440  R *= ( 1.0 + b3*( 1. - G4Exp( (At - meanA)/tauA3) ) );
1441  }
1442  return R;
1443 
1444 }
1446 //
1447 //
1448 
1449 G4double
1451 {
1452  G4double oneThird = 1.0/3.0;
1453  G4double cubicrAt = G4Pow::GetInstance()->powA(G4double(At), oneThird);
1454 
1455  G4double R; // = fRadiusConst*cubicrAt;
1456 
1457  /*
1458  G4double tmp = G4Pow::GetInstance()->powA( cubicrAt-1., 3.);
1459  tmp += At;
1460  tmp *= 0.5;
1461 
1462  if (At > 20.)
1463  {
1464  R = fRadiusConst*G4Pow::GetInstance()->powA (tmp, oneThird);
1465  }
1466  else
1467  {
1468  R = fRadiusConst*cubicrAt;
1469  }
1470  */
1471 
1472  R = fRadiusConst*cubicrAt;
1473 
1474  G4double meanA = 20.;
1475  G4double tauA = 20.;
1476 
1477  if (At > 20) // 20.
1478  {
1479  R *= ( 0.8 + 0.2*G4Exp( -(G4double(At) - meanA)/tauA) );
1480  }
1481  else
1482  {
1483  R *= ( 1.0 + 0.1*( 1. - G4Exp( (G4double(At) - meanA)/tauA) ) );
1484  }
1485 
1486  return R;
1487 }
1488 
1490 //
1491 //
1492 
1494  const G4double mt ,
1495  const G4double Plab )
1496 {
1497  G4double Elab = std::sqrt ( mp * mp + Plab * Plab );
1498  G4double Ecm = std::sqrt ( mp * mp + mt * mt + 2 * Elab * mt );
1499  // G4double Pcm = Plab * mt / Ecm;
1500  // G4double KEcm = std::sqrt ( Pcm * Pcm + mp * mp ) - mp;
1501 
1502  return Ecm ; // KEcm;
1503 }
1504 
1506 //
1507 //
1508 
1510  const G4double mt ,
1511  const G4double Plab )
1512 {
1513  G4double Elab = std::sqrt ( mp * mp + Plab * Plab );
1514  G4double sMand = mp*mp + mt*mt + 2*Elab*mt ;
1515 
1516  return sMand;
1517 }
1518 
1520 //
1521 //
1522 
1524 {
1525  outFile << "G4ComponentGGHadronNucleusXsc calculates total, inelastic and\n"
1526  << "elastic cross sections for hadron-nucleus cross sections using\n"
1527  << "the Glauber model with Gribov corrections. It is valid for all\n"
1528  << "targets except hydrogen, and for incident p, pbar, n, sigma-,\n"
1529  << "pi+, pi-, K+, K- and gammas with energies above 3 GeV. This is\n"
1530  << "a cross section component which is to be used to build a cross\n"
1531  << "data set.\n";
1532 }
1533 
1534 
1536 //
1537 // Correction arrays for GG <-> Bar changea at ~ 90 GeV
1538 
1540 
1541  1.0, 1.0, 1.42517e+00, // 1.118517e+00,
1542 1.082002e+00, 1.116171e+00, 1.078747e+00, 1.061315e+00,
1543 1.058205e+00, 1.082663e+00, 1.068500e+00, 1.076912e+00, 1.083475e+00, 1.079117e+00,
1544 1.071856e+00, 1.071990e+00, 1.073774e+00, 1.079356e+00, 1.081314e+00, 1.082056e+00,
1545 1.090772e+00, 1.096776e+00, 1.095828e+00, 1.097678e+00, 1.099157e+00, 1.103677e+00,
1546 1.105132e+00, 1.109806e+00, 1.110816e+00, 1.117378e+00, 1.115165e+00, 1.115710e+00,
1547 1.111855e+00, 1.110482e+00, 1.110112e+00, 1.106676e+00, 1.108706e+00, 1.105549e+00,
1548 1.106318e+00, 1.106242e+00, 1.107672e+00, 1.107342e+00, 1.108119e+00, 1.106655e+00,
1549 1.102588e+00, 1.096657e+00, 1.092920e+00, 1.086629e+00, 1.083592e+00, 1.076030e+00,
1550 1.083777e+00, 1.089460e+00, 1.086545e+00, 1.079924e+00, 1.082218e+00, 1.077798e+00,
1551 1.077062e+00, 1.072825e+00, 1.072241e+00, 1.072104e+00, 1.072490e+00, 1.069829e+00,
1552 1.070398e+00, 1.065458e+00, 1.064968e+00, 1.060524e+00, 1.060048e+00, 1.057620e+00,
1553 1.056428e+00, 1.055366e+00, 1.055017e+00, 1.052304e+00, 1.051767e+00, 1.049728e+00,
1554 1.048745e+00, 1.047399e+00, 1.045876e+00, 1.042972e+00, 1.041824e+00, 1.039993e+00,
1555 1.039021e+00, 1.036627e+00, 1.034176e+00, 1.032526e+00, 1.033633e+00, 1.036107e+00,
1556 1.037803e+00, 1.031266e+00, 1.032991e+00, 1.033284e+00, 1.035015e+00, 1.033945e+00,
1557 1.037075e+00, 1.034721e+00
1558 
1559 };
1560 
1562 
1563 1.0, 1.0, 1.167421e+00, 1.156250e+00, 1.205364e+00, 1.154225e+00, 1.120391e+00, // 6
1564 1.124632e+00, 1.129460e+00, 1.107863e+00, 1.102152e+00, 1.104593e+00, 1.100285e+00, // 12
1565 1.098450e+00, 1.092677e+00, 1.101124e+00, 1.106461e+00, 1.115049e+00, 1.123903e+00, // 18
1566 1.126661e+00, 1.131259e+00, 1.133949e+00, 1.134185e+00, 1.133767e+00, 1.132813e+00, // 24
1567 1.131515e+00, 1.144338e+00, // 1.130338e+00,
1568 1.134171e+00, 1.139206e+00, 1.148474e+00, // 1.141474e+00,
1569 1.142189e+00,
1570 1.140725e+00, 1.140100e+00, 1.139848e+00, 1.137674e+00, 1.138645e+00, 1.136339e+00,
1571 1.136439e+00, 1.135946e+00, 1.136431e+00, 1.135702e+00, 1.135703e+00, 1.134113e+00,
1572 1.131935e+00, 1.128381e+00, 1.126373e+00, 1.122453e+00, 1.120908e+00, 1.115953e+00,
1573 1.115947e+00, 1.114426e+00, 1.111749e+00, 1.106207e+00, 1.107494e+00, 1.103622e+00,
1574 1.102576e+00, 1.098816e+00, 1.097889e+00, 1.097306e+00, 1.097130e+00, 1.094578e+00,
1575 1.094552e+00, 1.090222e+00, 1.089358e+00, 1.085409e+00, 1.084560e+00, 1.082182e+00,
1576 1.080773e+00, 1.079464e+00, 1.078724e+00, 1.076121e+00, 1.075235e+00, 1.073159e+00,
1577 1.071920e+00, 1.070395e+00, 1.069503e+00, 1.067525e+00, 1.066919e+00, 1.065779e+00,
1578 1.065319e+00, 1.063730e+00, 1.062092e+00, 1.061085e+00, 1.059908e+00, 1.059815e+00,
1579 1.059109e+00, 1.051920e+00, 1.051258e+00, 1.049473e+00, 1.048823e+00, 1.045984e+00,
1580 1.046435e+00, 1.042614e+00
1581 
1582 };
1583 
1585 
1586 1.0, 1.0,
1587 1.118515e+00, 1.082000e+00, 1.116169e+00, 1.078745e+00, 1.061313e+00, 1.058203e+00,
1588 1.082661e+00, 1.068498e+00, 1.076910e+00, 1.083474e+00, 1.079115e+00, 1.071854e+00,
1589 1.071988e+00, 1.073772e+00, 1.079355e+00, 1.081312e+00, 1.082054e+00, 1.090770e+00,
1590 1.096774e+00, 1.095827e+00, 1.097677e+00, 1.099156e+00, 1.103676e+00, 1.105130e+00,
1591 1.109805e+00, 1.110814e+00, 1.117377e+00, 1.115163e+00, 1.115708e+00, 1.111853e+00,
1592 1.110480e+00, 1.110111e+00, 1.106674e+00, 1.108705e+00, 1.105548e+00, 1.106317e+00,
1593 1.106241e+00, 1.107671e+00, 1.107341e+00, 1.108118e+00, 1.106654e+00, 1.102586e+00,
1594 1.096655e+00, 1.092918e+00, 1.086628e+00, 1.083590e+00, 1.076028e+00, 1.083776e+00,
1595 1.089458e+00, 1.086543e+00, 1.079923e+00, 1.082216e+00, 1.077797e+00, 1.077061e+00,
1596 1.072824e+00, 1.072239e+00, 1.072103e+00, 1.072488e+00, 1.069828e+00, 1.070396e+00,
1597 1.065456e+00, 1.064966e+00, 1.060523e+00, 1.060047e+00, 1.057618e+00, 1.056427e+00,
1598 1.055365e+00, 1.055016e+00, 1.052303e+00, 1.051766e+00, 1.049727e+00, 1.048743e+00,
1599 1.047397e+00, 1.045875e+00, 1.042971e+00, 1.041823e+00, 1.039992e+00, 1.039019e+00,
1600 1.036626e+00, 1.034175e+00, 1.032525e+00, 1.033632e+00, 1.036106e+00, 1.037802e+00,
1601 1.031265e+00, 1.032990e+00, 1.033283e+00, 1.035014e+00, 1.033944e+00, 1.037074e+00,
1602 1.034720e+00
1603 
1604 };
1605 
1607 
1608 1.0, 1.0,
1609 1.147419e+00, // 1.167419e+00,
1610 1.156248e+00, 1.205362e+00, 1.154224e+00, 1.120390e+00, 1.124630e+00, // 7
1611 1.129459e+00, 1.107861e+00, 1.102151e+00, 1.104591e+00, 1.100284e+00, 1.098449e+00, // 13
1612 1.092675e+00, 1.101122e+00, 1.106460e+00, 1.115048e+00, 1.123902e+00, 1.126659e+00, // 19
1613 1.131258e+00, 1.133948e+00, 1.134183e+00, 1.133766e+00, 1.132812e+00, 1.131514e+00, // 25
1614 1.140337e+00, // 1.130337e+00,
1615 
1616 1.134170e+00, 1.139205e+00, 1.151472e+00, // 1.141472e+00,
1617 1.142188e+00, 1.140724e+00,
1618 1.140099e+00, 1.139847e+00, 1.137672e+00, 1.138644e+00, 1.136338e+00, 1.136438e+00,
1619 1.135945e+00, 1.136429e+00, 1.135701e+00, 1.135702e+00, 1.134112e+00, 1.131934e+00,
1620 1.128380e+00, 1.126371e+00, 1.122452e+00, 1.120907e+00, 1.115952e+00, 1.115946e+00,
1621 1.114425e+00, 1.111748e+00, 1.106205e+00, 1.107493e+00, 1.103621e+00, 1.102575e+00,
1622 1.098815e+00, 1.097888e+00, 1.097305e+00, 1.097129e+00, 1.094577e+00, 1.094551e+00,
1623 1.090221e+00, 1.089357e+00, 1.085408e+00, 1.084559e+00, 1.082181e+00, 1.080772e+00,
1624 1.079463e+00, 1.078723e+00, 1.076120e+00, 1.075234e+00, 1.073158e+00, 1.071919e+00,
1625 1.070394e+00, 1.069502e+00, 1.067524e+00, 1.066918e+00, 1.065778e+00, 1.065318e+00,
1626 1.063729e+00, 1.062091e+00, 1.061084e+00, 1.059907e+00, 1.059814e+00, 1.059108e+00,
1627 1.051919e+00, 1.051257e+00, 1.049472e+00, 1.048822e+00, 1.045983e+00, 1.046434e+00,
1628 1.042613e+00
1629 
1630 };
1631 
1632 
1634 
1635 1.0, 1.0,
1636 1.075927e+00, 1.074407e+00, 1.126098e+00, 1.100127e+00, 1.089742e+00, 1.083536e+00,
1637 1.089988e+00, 1.103566e+00, 1.096922e+00, 1.126573e+00, 1.132734e+00, 1.136512e+00,
1638 1.136629e+00, 1.133086e+00, 1.132428e+00, 1.129299e+00, 1.125622e+00, 1.126992e+00,
1639 1.127840e+00, 1.162670e+00, 1.160392e+00, 1.157864e+00, 1.157227e+00, 1.154627e+00,
1640 1.192555e+00, 1.197243e+00, 1.197911e+00, 1.200326e+00, 1.220053e+00, 1.215019e+00,
1641 1.211703e+00, 1.209080e+00, 1.204248e+00, 1.203328e+00, 1.198671e+00, 1.196840e+00,
1642 1.194392e+00, 1.193037e+00, 1.190408e+00, 1.188583e+00, 1.206127e+00, 1.210028e+00,
1643 1.206434e+00, 1.204456e+00, 1.200547e+00, 1.199058e+00, 1.200174e+00, 1.200276e+00,
1644 1.198912e+00, 1.213048e+00, 1.207160e+00, 1.208020e+00, 1.203814e+00, 1.202380e+00,
1645 1.198306e+00, 1.197002e+00, 1.196027e+00, 1.195449e+00, 1.192563e+00, 1.192135e+00,
1646 1.187556e+00, 1.186308e+00, 1.182124e+00, 1.180900e+00, 1.178224e+00, 1.176471e+00,
1647 1.174811e+00, 1.173702e+00, 1.170827e+00, 1.169581e+00, 1.167205e+00, 1.165626e+00,
1648 1.180244e+00, 1.177626e+00, 1.175121e+00, 1.173903e+00, 1.172192e+00, 1.171128e+00,
1649 1.168997e+00, 1.166826e+00, 1.164130e+00, 1.165412e+00, 1.165504e+00, 1.165020e+00,
1650 1.158462e+00, 1.158014e+00, 1.156519e+00, 1.156081e+00, 1.153602e+00, 1.154190e+00,
1651 1.152974e+00
1652 
1653 };
1654 
1656 
1657 1.0, 1.0,
1658 1.140246e+00, 1.097872e+00, 1.104301e+00, 1.068722e+00, 1.056495e+00, 1.062622e+00, // 7
1659 1.047987e+00, 1.037032e+00, 1.035686e+00, 1.042870e+00, 1.052222e+00, 1.075100e+00, // 13
1660 1.084480e+00, 1.078286e+00, 1.081488e+00, 1.089713e+00, 1.099105e+00, 1.098003e+00, // 19
1661 1.102175e+00, 1.117707e+00, 1.121734e+00, 1.125229e+00, 1.126457e+00, 1.128905e+00, // 25
1662 1.163312e+00, 1.126263e+00, 1.126459e+00, 1.135191e+00, 1.116986e+00, 1.117184e+00, // 31
1663 1.117037e+00, 1.116777e+00, 1.115858e+00, 1.115745e+00, 1.114489e+00, 1.113993e+00, // 37
1664 1.113226e+00, 1.112818e+00, 1.111890e+00, 1.111238e+00, 1.111209e+00, 1.111775e+00, // 43
1665 1.110256e+00, 1.109414e+00, 1.107647e+00, 1.106980e+00, 1.106096e+00, 1.107331e+00, // 49
1666 1.107849e+00, 1.106407e+00, 1.103426e+00, 1.103896e+00, 1.101756e+00, 1.101031e+00, // 55
1667 1.098915e+00, 1.098260e+00, 1.097768e+00, 1.097487e+00, 1.095964e+00, 1.095773e+00, // 61
1668 1.093348e+00, 1.092687e+00, 1.090465e+00, 1.089821e+00, 1.088394e+00, 1.087462e+00, // 67
1669 1.086571e+00, 1.085997e+00, 1.084451e+00, 1.083798e+00, 1.082513e+00, 1.081670e+00, // 73
1670 1.080735e+00, 1.075659e+00, 1.074341e+00, 1.073689e+00, 1.072787e+00, 1.072237e+00, // 79
1671 1.071107e+00, 1.069955e+00, 1.074856e+00, 1.065873e+00, 1.065938e+00, 1.065694e+00,
1672 1.062192e+00, 1.061967e+00, 1.061180e+00, 1.060960e+00, 1.059646e+00, 1.059975e+00,
1673 1.059658e+00
1674 
1675 };
1676 
1677 
1679 
1680 1.0, 1.0,
1681 1.3956e+00, 1.077959e+00, 1.129145e+00, 1.102088e+00, 1.089765e+00, 1.083542e+00, // 7
1682 1.089995e+00, 1.104895e+00, 1.097154e+00, 1.127663e+00, 1.133063e+00, 1.137425e+00, // 13
1683 1.136724e+00, 1.133859e+00, 1.132498e+00, 1.130276e+00, 1.127896e+00, 1.127656e+00, // 19
1684 1.127905e+00, 1.164210e+00, 1.162259e+00, 1.160075e+00, 1.158978e+00, 1.156649e+00, // 25
1685 1.194157e+00, 1.199177e+00, 1.198983e+00, 1.202325e+00, 1.221967e+00, 1.217548e+00,
1686 1.214389e+00, 1.211760e+00, 1.207335e+00, 1.206081e+00, 1.201766e+00, 1.199779e+00,
1687 1.197283e+00, 1.195706e+00, 1.193071e+00, 1.191115e+00, 1.208838e+00, 1.212681e+00,
1688 1.209235e+00, 1.207163e+00, 1.203451e+00, 1.201807e+00, 1.203283e+00, 1.203388e+00,
1689 1.202244e+00, 1.216509e+00, 1.211066e+00, 1.211504e+00, 1.207539e+00, 1.205991e+00,
1690 1.202143e+00, 1.200724e+00, 1.199595e+00, 1.198815e+00, 1.196025e+00, 1.195390e+00,
1691 1.191137e+00, 1.189791e+00, 1.185888e+00, 1.184575e+00, 1.181996e+00, 1.180229e+00,
1692 1.178545e+00, 1.177355e+00, 1.174616e+00, 1.173312e+00, 1.171016e+00, 1.169424e+00,
1693 1.184120e+00, 1.181478e+00, 1.179085e+00, 1.177817e+00, 1.176124e+00, 1.175003e+00,
1694 1.172947e+00, 1.170858e+00, 1.168170e+00, 1.169397e+00, 1.169304e+00, 1.168706e+00,
1695 1.162774e+00, 1.162217e+00, 1.160740e+00, 1.160196e+00, 1.157857e+00, 1.158220e+00,
1696 1.157267e+00
1697 };
1698 
1699 
1701 
1702 1.0, 1.0,
1703 1.463e+00, 1.100898e+00, 1.106773e+00, 1.070289e+00, 1.040514e+00, 1.062628e+00, // 7
1704 1.047992e+00, 1.038041e+00, 1.035862e+00, 1.043679e+00, 1.052466e+00, 1.065780e+00, // 13
1705 1.070551e+00, 1.078869e+00, 1.081541e+00, 1.090455e+00, 1.100847e+00, 1.098511e+00, // 19
1706 1.102226e+00, 1.118865e+00, 1.123143e+00, 1.126904e+00, 1.127785e+00, 1.130444e+00, // 25
1707 1.148502e+00, 1.127678e+00, 1.127244e+00, 1.123634e+00, 1.118347e+00, 1.118988e+00,
1708 1.118957e+00, 1.118696e+00, 1.118074e+00, 1.117722e+00, 1.116717e+00, 1.116111e+00,
1709 1.115311e+00, 1.114745e+00, 1.113814e+00, 1.113069e+00, 1.113141e+00, 1.113660e+00,
1710 1.112249e+00, 1.111343e+00, 1.109718e+00, 1.108942e+00, 1.108310e+00, 1.109549e+00,
1711 1.110227e+00, 1.108846e+00, 1.106183e+00, 1.106354e+00, 1.104388e+00, 1.103583e+00,
1712 1.101632e+00, 1.100896e+00, 1.100296e+00, 1.099873e+00, 1.098420e+00, 1.098082e+00,
1713 1.095892e+00, 1.095162e+00, 1.093144e+00, 1.092438e+00, 1.091083e+00, 1.090142e+00,
1714 1.089236e+00, 1.088604e+00, 1.087159e+00, 1.086465e+00, 1.085239e+00, 1.084388e+00,
1715 1.083473e+00, 1.078373e+00, 1.077136e+00, 1.076450e+00, 1.075561e+00, 1.074973e+00,
1716 1.073898e+00, 1.072806e+00, 1.067706e+00, 1.068684e+00, 1.068618e+00, 1.068294e+00,
1717 1.065241e+00, 1.064939e+00, 1.064166e+00, 1.063872e+00, 1.062659e+00, 1.062828e+00,
1718 1.062699e+00
1719 
1720 };
1721 
1722 
1723 //
1724 //
G4double GetElasticHadronNucleonXsc()
G4double GetRatioQE(const G4DynamicParticle *, G4int At, G4int Zt)
static G4Pow * GetInstance()
Definition: G4Pow.cc:55
G4double GetNucleusRadius(const G4DynamicParticle *, const G4Element *)
G4double GetHadronNucleonXscPDG(const G4DynamicParticle *, const G4Element *)
G4double powA(G4double A, G4double y) const
Definition: G4Pow.hh:259
static const double MeV
Definition: G4SIunits.hh:211
virtual G4double GetProductionElementCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4double A)
static G4AntiOmegaMinus * AntiOmegaMinus()
G4double GetKineticEnergy() const
G4double GetTotalEnergy() const
G4double GetN() const
Definition: G4Element.hh:134
static const G4double a1
G4double CalcMandelstamS(const G4double, const G4double, const G4double)
static G4OmegaMinus * OmegaMinus()
G4double GetZ() const
Definition: G4Element.hh:131
static G4KaonZeroLong * KaonZeroLong()
G4double GetRatioSD(const G4DynamicParticle *, G4int At, G4int Zt)
static const G4double fNeutronBarCorrectionIn[93]
static const G4double fPionMinusBarCorrectionTot[93]
G4ParticleDefinition * GetDefinition() const
double B(double temperature)
static G4AntiSigmaPlus * AntiSigmaPlus()
int G4int
Definition: G4Types.hh:78
G4double GetIsoCrossSection(const G4DynamicParticle *, G4int Z, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
static G4SigmaZero * SigmaZero()
Definition: G4SigmaZero.cc:102
G4double GetHNinelasticXscVU(const G4DynamicParticle *, G4int At, G4int Zt)
static G4KaonMinus * KaonMinus()
Definition: G4KaonMinus.cc:113
G4double GetHadronNucleonXscNS(const G4DynamicParticle *, const G4ParticleDefinition *)
virtual G4double GetInelasticIsotopeCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A)
static G4AntiSigmaMinus * AntiSigmaMinus()
static G4XiZero * XiZero()
Definition: G4XiZero.cc:106
double A(double temperature)
G4double GetHadronNucleonXscNS(const G4DynamicParticle *, const G4Element *)
static const G4double b3
G4double GetKaonNucleonXscGG(const G4DynamicParticle *, const G4ParticleDefinition *)
static G4KaonZeroShort * KaonZeroShort()
static G4AntiProton * AntiProton()
Definition: G4AntiProton.cc:93
G4double GetMass() const
bool G4bool
Definition: G4Types.hh:79
static G4XiMinus * XiMinus()
Definition: G4XiMinus.cc:106
static G4AntiXiMinus * AntiXiMinus()
static G4Triton * Triton()
Definition: G4Triton.cc:95
static G4Proton * Proton()
Definition: G4Proton.cc:93
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
static const double GeV
Definition: G4SIunits.hh:214
static const G4double b2
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
virtual G4double GetInelasticElementCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4double A)
G4double GetHadronNucleonXsc(const G4DynamicParticle *, const G4Element *)
static G4PionZero * PionZero()
Definition: G4PionZero.cc:108
G4double GetHNinelasticXsc(const G4DynamicParticle *, const G4Element *)
static G4Deuteron * Deuteron()
Definition: G4Deuteron.cc:94
G4double GetParticleBarCorIn(const G4ParticleDefinition *theParticle, G4int Z)
static G4SigmaMinus * SigmaMinus()
G4double G4Log(G4double x)
Definition: G4Log.hh:230
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
virtual void CrossSectionDescription(std::ostream &) const
static const G4double fPionPlusBarCorrectionTot[93]
static const double pi
Definition: G4SIunits.hh:74
static G4ParticleTable * GetParticleTable()
static const G4double fProtonBarCorrectionTot[93]
static G4AntiLambda * AntiLambda()
int G4lrint(double ad)
Definition: templates.hh:163
static G4PionMinus * PionMinus()
Definition: G4PionMinus.cc:98
static G4AntiSigmaZero * AntiSigmaZero()
virtual G4double GetTotalIsotopeCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A)
virtual G4double GetElasticIsotopeCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A)
static const double millibarn
Definition: G4SIunits.hh:105
static const G4double b1
static G4AntiXiZero * AntiXiZero()
G4double CalculateEcmValue(const G4double, const G4double, const G4double)
static const G4double fPionPlusBarCorrectionIn[93]
G4bool IsIsoApplicable(const G4DynamicParticle *aDP, G4int Z, G4int A, const G4Element *elm=0, const G4Material *mat=0)
static G4Alpha * Alpha()
Definition: G4Alpha.cc:89
static G4SigmaPlus * SigmaPlus()
Definition: G4SigmaPlus.cc:108
static G4Lambda * Lambda()
Definition: G4Lambda.cc:108
double G4double
Definition: G4Types.hh:76
virtual G4double GetTotalElementCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4double A)
static G4KaonPlus * KaonPlus()
Definition: G4KaonPlus.cc:113
static const G4double fProtonBarCorrectionIn[93]
virtual G4double GetElasticElementCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4double A)
static const G4double fPionMinusBarCorrectionIn[93]
G4ThreeVector G4ParticleMomentum
static G4He3 * He3()
Definition: G4He3.cc:94
const G4double oneThird
virtual G4double ComputeQuasiElasticRatio(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A)
static const double fermi
Definition: G4SIunits.hh:102
G4double GetParticleBarCorTot(const G4ParticleDefinition *theParticle, G4int Z)
static G4AntiNeutron * AntiNeutron()
static const G4double fNeutronBarCorrectionTot[93]
G4double GetInelasticHadronNucleonXsc()
G4ThreeVector GetMomentum() const
virtual G4double GetProductionIsotopeCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A)