Geant4_10
GVFlashHomoShowerTuning.hh
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: GVFlashHomoShowerTuning.hh 68057 2013-03-13 14:46:00Z gcosmo $
28 //
29 //
30 // ---------------------------------------------------------------
31 // GEANT 4 class header file
32 //
33 // GVFlashHomoShowerTuning
34 //
35 // Class description:
36 //
37 // Tuning class for GFlash homogeneous shower parameterisation.
38 // Definitions:
39 // <t>: shower center of gravity
40 // T: Depth at shower maximum
41 // Ec: Critical energy
42 // X0: Radiation length
43 // y = E/Ec
44 //
45 // Homogeneous media:
46 // Average shower profile
47 // (1/E)(dE(t)/dt) = f(t)
48 // = (beta*t)**(alpha-1)*beta*std::exp(-beta*t)/Gamma(alpha)
49 // where Gamma is the Gamma function
50 //
51 // <t> = alpha/beta
52 // T = (alpha-1)/beta
53 // and
54 // T = ln(y) + t1
55 // alpha = a1+(a2+a3/Z)ln(y)
56 
57 // Author: J.P. Wellisch - October 2004
58 //---------------------------------------------------------------
59 #ifndef GVFlashHomoShowerTuning_hh
60 #define GVFlashHomoShowerTuning_hh
61 
63 {
64  public:
67 
68  public: // with description
69 
70  virtual G4double ParAveT1(){ return -0.812;} // t1
71  virtual G4double ParAveA1(){ return 0.81; } // a1
72  virtual G4double ParAveA2(){ return 0.458; } // a2
73  virtual G4double ParAveA3(){ return 2.26; } // a3
74 
75  virtual G4double ParSigLogT1(){ return -1.4;} // t1
76  virtual G4double ParSigLogT2(){ return 1.26;} // t2
77  // std::sqrt(var(ln(T))) = 1/(t+t2*ln(y))
78 
79  virtual G4double ParSigLogA1(){ return -0.58;} // a1
80  virtual G4double ParSigLogA2(){ return 0.86; } // a2
81  // std::sqrt(var(ln(alpha))) = 1/(a1+a2*ln(y))
82 
83  virtual G4double ParRho1(){ return 0.705; } // r1
84  virtual G4double ParRho2(){ return -0.023;} // r2
85  // Correlation(ln(T),ln(alpha))=r1+r2*ln(y)
86 
87  // Radial profiles
88  // f(r) := (1/dE(t))(dE(t,r)/dr)
89  // Ansatz:
90  // f(r) = p(2*r*Rc**2)/(r**2+Rc**2)**2+(1-p)*(2*r*Rt**2)/(r**2+Rt**2)**2,
91  // 0<p<1
92 
93  virtual G4double ParRC1(){ return 0.0251; } // c1
94  virtual G4double ParRC2(){ return 0.00319; } // c2
95  virtual G4double ParRC3(){ return 0.1162; } // c3
96  virtual G4double ParRC4(){ return -0.000381;} // c4
97  // Rc (t/T)= z1 +z2*t/T
98  // z1 = c1+c2*ln(E/GeV)
99  // z2 = c3+c4*Z
100 
101  virtual G4double ParRT1(){ return 0.659; } // t1
102  virtual G4double ParRT2(){ return -0.00309;} // t2
103  virtual G4double ParRT3(){ return 0.645; } // k2
104  virtual G4double ParRT4(){ return -2.59; } // k3
105  virtual G4double ParRT5(){ return 0.3585; } // t5
106  virtual G4double ParRT6(){ return 0.0412; } // t6
107  // Rt (t/T)= k1*(std::exp(k3*(t/T-k2))+std::exp(k4*(t/T-k2)))
108  // k1 = t1+t2*Z
109  // k4 = t5+t6*ln(E/GeV)
110 
111  virtual G4double ParWC1(){ return 2.632; } // c1
112  virtual G4double ParWC2(){ return -0.00094;} // c2
113  virtual G4double ParWC3(){ return 0.401; } // c3
114  virtual G4double ParWC4(){ return 0.00187; } // c4
115  virtual G4double ParWC5(){ return 1.313; } // c5
116  virtual G4double ParWC6(){ return -0.0686; } // c6
117  // p(t/T) = p1*std::exp((p2-t/T)/p3 - std::exp((p2-t/T)/p3))
118  // p1 = c1+c2*Z
119  // p2 = c3+c4*Z
120  // p3 = c5 + c6*ln(E/GeV)
121 
122  virtual G4double ParSpotN1(){ return 93.; } // n1
123  virtual G4double ParSpotN2(){ return 0.876;} // n2
124  // Fluctuations on radial profiles through number of spots
125  // The total number of spots needed for a shower is
126  // Ns = n1*ln(Z)(E/GeV)**n2
127 
128  // The number of spots per longitudinal interval is:
129  // (1/Ns)(dNs(t)/dt) = f(t)
130  // = (beta*t)**(alpha-1)*beta*std::exp(-beta*t)/Gamma(alpha)
131  // <t> = alpha_s/beta_s
132  // Ts = (alpha_s-1)/beta_s
133  // and
134  // Ts = T*(t1+t2*Z)
135  // alpha_s = alpha*(a1+a2*Z)
136 
137  virtual G4double ParSpotT1(){ return 0.698; } // t1
138  virtual G4double ParSpotT2(){ return 0.00212;} // t2
139 
140  virtual G4double ParSpotA1(){ return 0.639; } //a1
141  virtual G4double ParSpotA2(){ return 0.00334;} //a2
142 
143 };
144 
145 #endif
double G4double
Definition: G4Types.hh:76