Geant4_10
Main Page
Related Pages
Modules
Namespaces
Classes
Files
File List
File Members
source
source
global
HEPNumerics
include
G4PolynomialSolver.hh
Go to the documentation of this file.
1
//
2
// ********************************************************************
3
// * License and Disclaimer *
4
// * *
5
// * The Geant4 software is copyright of the Copyright Holders of *
6
// * the Geant4 Collaboration. It is provided under the terms and *
7
// * conditions of the Geant4 Software License, included in the file *
8
// * LICENSE and available at http://cern.ch/geant4/license . These *
9
// * include a list of copyright holders. *
10
// * *
11
// * Neither the authors of this software system, nor their employing *
12
// * institutes,nor the agencies providing financial support for this *
13
// * work make any representation or warranty, express or implied, *
14
// * regarding this software system or assume any liability for its *
15
// * use. Please see the license in the file LICENSE and URL above *
16
// * for the full disclaimer and the limitation of liability. *
17
// * *
18
// * This code implementation is the result of the scientific and *
19
// * technical work of the GEANT4 collaboration. *
20
// * By using, copying, modifying or distributing the software (or *
21
// * any work based on the software) you agree to acknowledge its *
22
// * use in resulting scientific publications, and indicate your *
23
// * acceptance of all terms of the Geant4 Software license. *
24
// ********************************************************************
25
//
26
//
27
// $Id: G4PolynomialSolver.hh 67970 2013-03-13 10:10:06Z gcosmo $
28
//
29
// class G4PolynomialSolver
30
//
31
// Class description:
32
//
33
// G4PolynomialSolver allows the user to solve a polynomial equation
34
// with a great precision. This is used by Implicit Equation solver.
35
//
36
// The Bezier clipping method is used to solve the polynomial.
37
//
38
// How to use it:
39
// Create a class that is the function to be solved.
40
// This class could have internal parameters to allow to change
41
// the equation to be solved without recreating a new one.
42
//
43
// Define a Polynomial solver, example:
44
// G4PolynomialSolver<MyFunctionClass,G4double(MyFunctionClass::*)(G4double)>
45
// PolySolver (&MyFunction,
46
// &MyFunctionClass::Function,
47
// &MyFunctionClass::Derivative,
48
// precision);
49
//
50
// The precision is relative to the function to solve.
51
//
52
// In MyFunctionClass, provide the function to solve and its derivative:
53
// Example of function to provide :
54
//
55
// x,y,z,dx,dy,dz,Rmin,Rmax are internal variables of MyFunctionClass
56
//
57
// G4double MyFunctionClass::Function(G4double value)
58
// {
59
// G4double Lx,Ly,Lz;
60
// G4double result;
61
//
62
// Lx = x + value*dx;
63
// Ly = y + value*dy;
64
// Lz = z + value*dz;
65
//
66
// result = TorusEquation(Lx,Ly,Lz,Rmax,Rmin);
67
//
68
// return result ;
69
// }
70
//
71
// G4double MyFunctionClass::Derivative(G4double value)
72
// {
73
// G4double Lx,Ly,Lz;
74
// G4double result;
75
//
76
// Lx = x + value*dx;
77
// Ly = y + value*dy;
78
// Lz = z + value*dz;
79
//
80
// result = dx*TorusDerivativeX(Lx,Ly,Lz,Rmax,Rmin);
81
// result += dy*TorusDerivativeY(Lx,Ly,Lz,Rmax,Rmin);
82
// result += dz*TorusDerivativeZ(Lx,Ly,Lz,Rmax,Rmin);
83
//
84
// return result;
85
// }
86
//
87
// Then to have a root inside an interval [IntervalMin,IntervalMax] do the
88
// following:
89
//
90
// MyRoot = PolySolver.solve(IntervalMin,IntervalMax);
91
//
92
93
// History:
94
//
95
// - 19.12.00 E.Medernach, First implementation
96
//
97
98
#ifndef G4POL_SOLVER_HH
99
#define G4POL_SOLVER_HH
100
101
#include "
globals.hh
"
102
103
template
<
class
T,
class
F>
104
class
G4PolynomialSolver
105
{
106
public
:
// with description
107
108
G4PolynomialSolver
(T* typeF, F func, F deriv,
G4double
precision);
109
~G4PolynomialSolver
();
110
111
112
G4double
solve
(
G4double
IntervalMin,
G4double
IntervalMax);
113
114
private
:
115
116
G4double
Newton (
G4double
IntervalMin,
G4double
IntervalMax);
117
//General Newton method with Bezier Clipping
118
119
// Works for polynomial of order less or equal than 4.
120
// But could be changed to work for polynomial of any order providing
121
// that we find the bezier control points.
122
123
G4int
BezierClipping(
G4double
*IntervalMin,
G4double
*IntervalMax);
124
// This is just one iteration of Bezier Clipping
125
126
127
T* FunctionClass ;
128
F Function ;
129
F Derivative ;
130
131
G4double
Precision;
132
};
133
134
#include "G4PolynomialSolver.icc"
135
136
#endif
G4int
int G4int
Definition:
G4Types.hh:78
G4PolynomialSolver::solve
G4double solve(G4double IntervalMin, G4double IntervalMax)
globals.hh
G4PolynomialSolver::G4PolynomialSolver
G4PolynomialSolver(T *typeF, F func, F deriv, G4double precision)
G4double
double G4double
Definition:
G4Types.hh:76
G4PolynomialSolver::~G4PolynomialSolver
~G4PolynomialSolver()
G4PolynomialSolver
Definition:
G4PolynomialSolver.hh:104
Generated on Sat Dec 14 2013 14:34:15 for Geant4_10 by
1.8.5