76 G4double gmo2 = (gamma - 1.)*(gamma - 1.);
79 G4double gpo2 = (gamma + 1.)*(gamma + 1.);
94 G4double egmp32 = std::pow(e*(2 + e*gmo)*gpo,(3./2.));
99 if (flag==0) polarized=
false;
104 phi0+= -2.*e*gamma*gmo2/gpo3;
105 phi0+= (3.*gamma2 + 6.*gamma + 4.)*gmo/gpo3;
106 phi0+= -(2.*gamma2 + 4.*gamma + 1.)/(e*gpo2);
107 phi0+= gamma2/(e2*(gamma2 - 1.));
115 G4double xx = -((e*gmo - gamma)*(-1 - gamma + e*(e*gmo - gamma)*(3 + gamma)))/(4*e*gpo3);
116 G4double yy = (e3*gmo3 - 2*e2*gmo2*gamma - gpo*(1 + 2*gamma) + e*(-2 + gamma2 + gamma3))/(4*e*gpo3);
117 G4double zz = ((e*gmo - gamma)*(e2*gmo*(3 + gamma) - e*gamma*(3 + gamma) + gpo*(1 + 2*gamma)))/(4*e*gpo3);
120 phi0 += xx*pol0.
x()*pol1.
x() + yy*pol0.
y()*pol1.
y() + zz*pol0.
z()*pol1.
z();
124 G4double xz = (d*(e*gmo - gamma)*(-1 + 2*e*gmo - gamma))/(2*sqrttwo*gpo52);
130 phi0+=yx*pol0.
y()*pol1.
x() + xy*pol0.
x()*pol1.
y();
131 phi0+=zx*pol0.
z()*pol1.
x() + xz*pol0.
x()*pol1.
z();
132 phi0+=zy*pol0.
z()*pol1.
y() + yz*pol0.
y()*pol1.
z();
146 G4double xxPplKpl = -((-1 + e)*(e*gmo - gamma)*(-(gamma*gpo) + e*(-2 + gamma + gamma2)))/
147 (4*e2*gpo*std::sqrt(gmo*gpo*(-1 + e + gamma - e*gamma)* (1 + e + gamma - e*gamma)));
149 G4double xzPplKpl = ((e*gmo - gamma)*(-1 - gamma + e*gmo*(1 + 2*gamma)))/
150 (2*sqrttwo*e32*gmo*gpo2*std::sqrt(1 + e + gamma - e*gamma));
152 G4double yyPplKpl = (gamma2*gpo + e2*gmo2*(3 + gamma) -
153 e*gmo*(1 + 2*gamma*(2 + gamma)))/(4*e2*gmo*gpo2);
155 G4double zxPplKpl = ((e*gmo - gamma)*(1 + e*(-1 + 2*e*gmo - 2*gamma)*gmo + gamma))/
156 (2*sqrttwo*e*gmo*gpo2*std::sqrt(e*(1 + e + gamma - e*gamma)));
158 G4double zzPplKpl = -((e*gmo - gamma)*std::sqrt((1 - e)/(e - e*gamma2 + gpo2))*
159 (2*e2*gmo2 + gamma + gamma2 - e*(-2 + gamma + gamma2)))/
160 (4*e2*(-1 + gamma2));
162 phi2[0] += xxPplKpl*pol0.
x() + xyPplKpl*pol0.
y() + xzPplKpl*pol0.
z();
163 phi2[1] += yxPplKpl*pol0.
x() + yyPplKpl*pol0.
y() + yzPplKpl*pol0.
z();
164 phi2[2] += zxPplKpl*pol0.
x() + zyPplKpl*pol0.
y() + zzPplKpl*pol0.
z();
168 G4double xxPplKmn = ((-1 + e)*(e*(-2 + gamma)*gmo + gamma))/(4*e*gpo32*std::sqrt(1 + e2*gmo + gamma - 2*e*gamma));
170 G4double xzPplKmn = (-1 + e*gmo + gmo*gamma)/(2*sqrttwo*gpo2* std::sqrt(e*(1 + e + gamma - e*gamma)));
172 G4double yyPplKmn = (-1 - 2*gamma + e*gmo*(3 + gamma))/(4*e*gpo2);
174 G4double zxPplKmn = (1 + 2*e2*gmo2 + gamma + gamma2 + e*(1 + (3 - 4*gamma)*gamma))/
175 (2*sqrttwo*gpo2*std::sqrt(e*(1 + e + gamma - e*gamma)));
177 G4double zzPplKmn = -(std::sqrt((1 - e)/(e - e*gamma2 + gpo2))*
178 (2*e2*gmo2 + gamma + 2*gamma2 + e*(2 + gamma - 3*gamma2)))/(4*e*gpo);
180 phi2[0] += xxPplKmn*pol1.
x() + xyPplKmn*pol1.
y() + xzPplKmn*pol1.
z();
181 phi2[1] += yxPplKmn*pol1.
x() + yyPplKmn*pol1.
y() + yzPplKmn*pol1.
z();
182 phi2[2] += zxPplKmn*pol1.
x() + zyPplKmn*pol1.
y() + zzPplKmn*pol1.
z();
189 G4double xxPmnKpl = ((-1 + e*gmo)*(2 + gamma))/(4*gpo* std::sqrt(e*(2 + e*gmo)*gpo));
191 G4double xzPmnKpl = (std::sqrt((-1 + e)/(-2 + e - e*gamma))*
192 (e + gamma + e*gamma - 2*(-1 + e)*gamma2))/(2*sqrttwo*e*gpo2);
194 G4double yyPmnKpl = (-1 - 2*gamma + e*gmo*(3 + gamma))/(4*e*gpo2);
196 G4double zxPmnKpl = -((-1 + e)*(1 + 2*e*gmo)*(e*gmo - gamma))/
197 (2*sqrttwo*e*std::sqrt(-((-1 + e)*(2 + e*gmo)))*gpo2);
199 G4double zzPmnKpl = (-2 + 2*e2*gmo2 + gamma*(-1 + 2*gamma) +
200 e*(-2 + (5 - 3*gamma)*gamma))/(4*std::sqrt(e*(2 + e*gmo))* gpo32);
202 phi3[0] += xxPmnKpl*pol0.
x() + xyPmnKpl*pol0.
y() + xzPmnKpl*pol0.
z();
203 phi3[1] += yxPmnKpl*pol0.
x() + yyPmnKpl*pol0.
y() + yzPmnKpl*pol0.
z();
204 phi3[2] += zxPmnKpl*pol0.
x() + zyPmnKpl*pol0.
y() + zzPmnKpl*pol0.
z();
208 G4double xxPmnKmn = -((2 + e*gmo)*(-1 + e*gmo - gamma)*(e*gmo - gamma)*
209 (-2 + gamma))/(4*gmo*egmp32);
211 G4double xzPmnKmn = ((e*gmo - gamma)*
212 std::sqrt((-1 + e + gamma - e*gamma)/(2 + e*gmo))*
213 (e + gamma - e*gamma + gamma2))/
214 (2*sqrttwo*e2*gmo32*gpo2);
216 G4double yyPmnKmn = (gamma2*gpo + e2*gmo2*(3 + gamma) -
217 e*gmo*(1 + 2*gamma*(2 + gamma)))/(4*e2*gmo*gpo2);
219 G4double zxPmnKmn = -((-1 + e)*(e*gmo - gamma)*(e*gmo + 2*e2*gmo2 - gamma*gpo))/
220 (2*sqrttwo*e2*std::sqrt(-((-1 + e)*(2 + e*gmo)))* gmo*gpo2);
222 G4double zzPmnKmn = ((e*gmo - gamma)*std::sqrt(e/((2 + e*gmo)*gpo))*
223 (-(e*(-2 + gamma)*gmo) + 2*e2*gmo2 + (-2 + gamma)*gpo))/(4*e2*(-1 + gamma2));
225 phi3[0] += xxPmnKmn*pol1.
x() + xyPmnKmn*pol1.
y() + xzPmnKmn*pol1.
z();
226 phi3[1] += yxPmnKmn*pol1.
x() + yyPmnKmn*pol1.
y() + yzPmnKmn*pol1.
z();
227 phi3[2] += zxPmnKmn*pol1.
x() + zyPmnKmn*pol1.
y() + zzPmnKmn*pol1.
z();
244 xs+=phi2*pol2 + phi3*pol3;
257 if (xmax != 1.)
G4cout<<
" warning xmax expected to be 1 but is "<<xmax<<
G4endl;
262 G4double gmo2 = (gamma - 1.)*(gamma - 1.);
263 G4double gpo2 = (gamma + 1.)*(gamma + 1.);
269 sigma0 += -gmo2*(gamma - 1.)*x*x*x/3. + gmo2*gamma*x*
x;
270 sigma0 += -(gamma - 1.)*(3.*gamma*(gamma + 2.) +4.)*
x;
271 sigma0 += (gamma*(gamma*(gamma*(4.*gamma - 1.) - 21.) - 7.)+13.)/(3.*(gamma - 1.));
273 sigma0 += logMEM*(2. - 1./gpo2);
274 sigma0 += gamma2/((gamma2 - 1.)*
x);
277 sigma2 += logMEM*gamma*(gamma + 1.)*(2.*gamma + 1.);
278 sigma2 += gamma*(7.*gamma*(gamma + 1.) - 2.)/3.;
279 sigma2 += -(3.*gamma + 1.)*(gamma2 + gamma - 1.)*
x;
280 sigma2 += (gamma - 1.)*gamma*(gamma + 3.)*x*
x;
281 sigma2 += -gmo2*(gamma + 3.)*x*x*x/3.;
285 sigma3 += 0.5*(gamma + 1.)*(3.*gamma + 1.)*logMEM;
286 sigma3 += (gamma*(5.*gamma - 4.) - 13.)/6.;
287 sigma3 += 0.5*(gamma2 + 3.)*
x;
288 sigma3 += - 2.*(gamma - 1.)*gamma*x*
x;
289 sigma3 += 2.*gmo2*x*x*x/3.;
292 xs+=pref*(sigma0 + sigma2*pol0.
z()*pol1.
z() + sigma3*(pol0.
x()*pol1.
x()+pol0.
y()*pol1.
y()));
302 return 1./phi0 * phi2;
308 return 1./phi0 * phi3;
virtual ~G4PolarizedBhabhaCrossSection()
CLHEP::Hep3Vector G4ThreeVector
G4GLOB_DLL std::ostream G4cout
void SetXmax(G4double xmax)
G4double XSection(const G4StokesVector &pol2, const G4StokesVector &pol3)
void Initialize(G4double x, G4double y, G4double phi, const G4StokesVector &p0, const G4StokesVector &p1, G4int flag=0)
G4double TotalXSection(G4double xmin, G4double xmax, G4double y, const G4StokesVector &pol0, const G4StokesVector &pol1)
G4PolarizedBhabhaCrossSection()