Geant4_10
G4Mag_SpinEqRhs.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: G4Mag_SpinEqRhs.cc 71664 2013-06-20 08:36:05Z gcosmo $
28 //
29 // This is the standard right-hand side for equation of motion.
30 // This version of the right-hand side includes the three components
31 // of the particle's spin.
32 //
33 // J. Apostolakis, February 8th, 1999
34 // P. Gumplinger, February 8th, 1999
35 // D. Cote-Ahern, P. Gumplinger, April 11th, 2001
36 //
37 // --------------------------------------------------------------------
38 
39 #include "G4Mag_SpinEqRhs.hh"
40 #include "G4PhysicalConstants.hh"
41 #include "G4SystemOfUnits.hh"
42 #include "G4MagneticField.hh"
43 #include "G4ThreeVector.hh"
44 
46  : G4Mag_EqRhs( MagField ), charge(0.), mass(0.), magMoment(0.),
47  spin(0.), omegac(0.), anomaly(0.0011659208), beta(0.), gamma(0.)
48 {
49 }
50 
52 {
53 }
54 
55 void
57  G4double MomentumXc,
58  G4double particleMass)
59 {
60  charge = particleCharge.GetCharge();
61  mass = particleMass;
62  magMoment = particleCharge.GetMagneticDipoleMoment();
63  spin = particleCharge.GetSpin();
64 
65  omegac = (eplus/mass)*c_light;
66 
67  G4double muB = 0.5*eplus*hbar_Planck/(mass/c_squared);
68 
69  G4double g_BMT;
70  if ( spin != 0. ) g_BMT = (magMoment/muB)/spin;
71  else g_BMT = 2.;
72 
73  anomaly = (g_BMT - 2.)/2.;
74 
75  G4double E = std::sqrt(sqr(MomentumXc)+sqr(mass));
76  beta = MomentumXc/E;
77  gamma = E/mass;
78 }
79 
80 void
82  const G4double B[3],
83  G4double dydx[] ) const
84 {
85  G4double momentum_mag_square = sqr(y[3]) + sqr(y[4]) + sqr(y[5]);
86  G4double inv_momentum_magnitude = 1.0 / std::sqrt( momentum_mag_square );
87  G4double cof = FCof()*inv_momentum_magnitude;
88 
89  dydx[0] = y[3] * inv_momentum_magnitude; // (d/ds)x = Vx/V
90  dydx[1] = y[4] * inv_momentum_magnitude; // (d/ds)y = Vy/V
91  dydx[2] = y[5] * inv_momentum_magnitude; // (d/ds)z = Vz/V
92 
93  if (charge == 0.) {
94  dydx[3] = 0.;
95  dydx[4] = 0.;
96  dydx[5] = 0.;
97  } else {
98  dydx[3] = cof*(y[4]*B[2] - y[5]*B[1]) ; // Ax = a*(Vy*Bz - Vz*By)
99  dydx[4] = cof*(y[5]*B[0] - y[3]*B[2]) ; // Ay = a*(Vz*Bx - Vx*Bz)
100  dydx[5] = cof*(y[3]*B[1] - y[4]*B[0]) ; // Az = a*(Vx*By - Vy*Bx)
101  }
102 
103  G4ThreeVector u(y[3], y[4], y[5]);
104  u *= inv_momentum_magnitude;
105 
106  G4ThreeVector BField(B[0],B[1],B[2]);
107 
108  G4double udb = anomaly*beta*gamma/(1.+gamma) * (BField * u);
109  G4double ucb = (anomaly+1./gamma)/beta;
110 
111  // Initialise the values of dydx that we do not update.
112  dydx[6] = dydx[7] = dydx[8] = 0.0;
113 
114  G4ThreeVector Spin(y[9],y[10],y[11]);
115 
116  G4double pcharge;
117  if (charge == 0.) pcharge = 1.;
118  else pcharge = charge;
119 
120  G4ThreeVector dSpin(0.,0.,0.);
121  if (Spin.mag2() != 0.) {
122  dSpin = pcharge*omegac*(ucb*(Spin.cross(BField))-udb*(Spin.cross(u)));
123  }
124 
125  dydx[ 9] = dSpin.x();
126  dydx[10] = dSpin.y();
127  dydx[11] = dSpin.z();
128 
129  return ;
130 }
void SetChargeMomentumMass(G4ChargeState particleCharge, G4double MomentumXc, G4double mass)
G4double GetCharge() const
double x() const
double z() const
Double_t y
Definition: plot.C:279
G4double FCof() const
Definition: G4Mag_EqRhs.hh:84
double y() const
G4double GetSpin() const
double mag2() const
G4double GetMagneticDipoleMoment() const
Hep3Vector cross(const Hep3Vector &) const
G4Mag_SpinEqRhs(G4MagneticField *MagField)
T sqr(const T &x)
Definition: templates.hh:145
double G4double
Definition: G4Types.hh:76
float c_light
Definition: hepunit.py:257
void EvaluateRhsGivenB(const G4double y[], const G4double B[3], G4double dydx[]) const