Geant4_10
G4JTPolynomialSolver.hh
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: G4JTPolynomialSolver.hh 67970 2013-03-13 10:10:06Z gcosmo $
28 //
29 // Class description:
30 //
31 // G4JTPolynomialSolver implements the Jenkins-Traub algorithm
32 // for real polynomial root finding.
33 // The solver returns -1, if the leading coefficient is zero,
34 // the number of roots found, otherwise.
35 //
36 // ----------------------------- INPUT --------------------------------
37 //
38 // op - double precision vector of coefficients in order of
39 // decreasing powers
40 // degree - integer degree of polynomial
41 //
42 // ----------------------------- OUTPUT -------------------------------
43 //
44 // zeror,zeroi - double precision vectors of the
45 // real and imaginary parts of the zeros
46 //
47 // ---------------------------- EXAMPLE -------------------------------
48 //
49 // G4JTPolynomialSolver trapEq ;
50 // G4double coef[8] ;
51 // G4double zr[7] , zi[7] ;
52 // G4int num = trapEq.FindRoots(coef,7,zr,zi);
53 
54 // ---------------------------- HISTORY -------------------------------
55 //
56 // Translated from original TOMS493 Fortran77 routine (ANSI C, by C.Bond).
57 // Translated to C++ and adapted to use STL vectors,
58 // by Oliver Link (Oliver.Link@cern.ch)
59 //
60 // --------------------------------------------------------------------
61 
62 #ifndef G4JTPOLYNOMIALSOLVER_HH
63 #define G4JTPOLYNOMIALSOLVER_HH
64 
65 #include <cmath>
66 #include <vector>
67 
68 #include "globals.hh"
69 
71 {
72 
73  public:
74 
77 
79  G4double *zeror, G4double *zeroi);
80 
81  private:
82 
83  std::vector<G4double> p;
84  std::vector<G4double> qp;
85  std::vector<G4double> k;
86  std::vector<G4double> qk;
87  std::vector<G4double> svk;
88 
89  G4double sr;
90  G4double si;
91  G4double u,v;
92  G4double a,b,c,d;
93  G4double a1,a3,a7;
94  G4double e,f,g,h;
95  G4double szr,szi;
96  G4double lzr,lzi;
97  G4int n;
98 
99  /* The following statements set machine constants */
100 
101  static const G4double base;
102  static const G4double eta;
103  static const G4double infin;
104  static const G4double smalno;
105  static const G4double are;
106  static const G4double mre;
107  static const G4double lo;
108 
109  void Quadratic(G4double a,G4double b1,G4double c,
110  G4double *sr,G4double *si, G4double *lr,G4double *li);
111  void ComputeFixedShiftPolynomial(G4int l2, G4int *nz);
112  void QuadraticPolynomialIteration(G4double *uu,G4double *vv,G4int *nz);
113  void RealPolynomialIteration(G4double *sss, G4int *nz, G4int *iflag);
114  void ComputeScalarFactors(G4int *type);
115  void ComputeNextPolynomial(G4int *type);
116  void ComputeNewEstimate(G4int type,G4double *uu,G4double *vv);
117  void QuadraticSyntheticDivision(G4int n, G4double *u, G4double *v,
118  std::vector<G4double> &p,
119  std::vector<G4double> &q,
120  G4double *a, G4double *b);
121 };
122 
123 #endif
const char * p
Definition: xmltok.h:285
int G4int
Definition: G4Types.hh:78
tuple degree
Definition: hepunit.py:69
const XML_Char int const XML_Char int const XML_Char * base
Definition: expat.h:331
double G4double
Definition: G4Types.hh:76
G4int FindRoots(G4double *op, G4int degree, G4double *zeror, G4double *zeroi)