Geant4_10
G4HelixImplicitEuler.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: G4HelixImplicitEuler.cc 66356 2012-12-18 09:02:32Z gcosmo $
28 //
29 //
30 // Helix Implicit Euler:
31 // x_1 = x_0 + 1/2 * ( helix(h,t_0,x_0)
32 // + helix(h,t_0+h,x_0+helix(h,t0,x0) ) )
33 // Second order solver.
34 // Take the current derivative and add it to the current position.
35 // Take the output and its derivative. Add the mean of both derivatives
36 // to form the final output
37 //
38 // W.Wander <wwc@mit.edu> 12/09/97
39 //
40 // -------------------------------------------------------------------------
41 
42 #include "G4HelixImplicitEuler.hh"
43 #include "G4ThreeVector.hh"
44 
45 void
47  G4ThreeVector Bfld,
48  G4double h,
49  G4double yOut[])
50 {
51  const G4int nvar = 6 ;
52  G4double yTemp[6], yTemp2[6];
53  G4ThreeVector Bfld_endpoint;
54 
55  G4int i;
56 
57  // Step forward like in the explicit euler case
58  AdvanceHelix( yIn, Bfld, h, yTemp);
59 
60  // now obtain the new field value at the new point
61  MagFieldEvaluate(yTemp, Bfld_endpoint);
62 
63  // and also advance along a helix for this field value
64  AdvanceHelix( yIn, Bfld_endpoint, h, yTemp2);
65 
66  // we take the average
67  for( i = 0; i < nvar; i++ )
68  yOut[i] = 0.5 * ( yTemp[i] + yTemp2[i] );
69 
70  // NormaliseTangentVector( yOut );
71 }
void AdvanceHelix(const G4double yIn[], G4ThreeVector Bfld, G4double h, G4double yHelix[], G4double yHelix2[]=0)
void MagFieldEvaluate(const G4double y[], G4ThreeVector &Bfield)
int G4int
Definition: G4Types.hh:78
void DumbStepper(const G4double y[], G4ThreeVector Bfld, G4double h, G4double yout[])
double G4double
Definition: G4Types.hh:76