Geant4_10
Main Page
Related Pages
Modules
Namespaces
Classes
Files
File List
File Members
source
source
global
HEPNumerics
include
G4GaussChebyshevQ.hh
Go to the documentation of this file.
1
//
2
// ********************************************************************
3
// * License and Disclaimer *
4
// * *
5
// * The Geant4 software is copyright of the Copyright Holders of *
6
// * the Geant4 Collaboration. It is provided under the terms and *
7
// * conditions of the Geant4 Software License, included in the file *
8
// * LICENSE and available at http://cern.ch/geant4/license . These *
9
// * include a list of copyright holders. *
10
// * *
11
// * Neither the authors of this software system, nor their employing *
12
// * institutes,nor the agencies providing financial support for this *
13
// * work make any representation or warranty, express or implied, *
14
// * regarding this software system or assume any liability for its *
15
// * use. Please see the license in the file LICENSE and URL above *
16
// * for the full disclaimer and the limitation of liability. *
17
// * *
18
// * This code implementation is the result of the scientific and *
19
// * technical work of the GEANT4 collaboration. *
20
// * By using, copying, modifying or distributing the software (or *
21
// * any work based on the software) you agree to acknowledge its *
22
// * use in resulting scientific publications, and indicate your *
23
// * acceptance of all terms of the Geant4 Software license. *
24
// ********************************************************************
25
//
26
//
27
// $Id: G4GaussChebyshevQ.hh 67970 2013-03-13 10:10:06Z gcosmo $
28
//
29
// Class description:
30
//
31
// Class for Gauss-Chebyshev quadrature method
32
// Roots of ortogonal polynoms and corresponding weights are calculated based on
33
// iteration method (by bisection Newton algorithm). Constant values for initial
34
// approximations were derived from the book: M. Abramowitz, I. Stegun, Handbook
35
// of mathematical functions, DOVER Publications INC, New York 1965 ; chapters 9,
36
// 10, and 22 .
37
//
38
// ------------------------------ CONSTRUCTORS ----------------------------
39
//
40
// Constructor for Gauss-Chebyshev quadrature method
41
//
42
// G4GaussChebyshevQuadrature( function pFunction,
43
// G4int nChebyshev )
44
//
45
//
46
//
47
// ------------------------------- METHODS -----------------------------------
48
//
49
// Integrates function pointed by fFunction from a to b by Gauss-Chebyshev quadrature
50
// method
51
//
52
// G4double Integral(G4double a, G4double b) const
53
54
// ------------------------------- HISTORY --------------------------------
55
//
56
// 13.05.97 V.Grichine (Vladimir.Grichine@cern.ch)
57
58
#ifndef G4GAUSSCHEBYSHEVQ_HH
59
#define G4GAUSSCHEBYSHEVQ_HH
60
61
#include "
G4VGaussianQuadrature.hh
"
62
63
class
G4GaussChebyshevQ
:
public
G4VGaussianQuadrature
64
{
65
public
:
66
// Constructor/destructor
67
68
G4GaussChebyshevQ
(
function
pFunction,
69
G4int
nChebyshev ) ;
70
71
~G4GaussChebyshevQ
() ;
72
73
// Methods
74
75
G4double
Integral
(
G4double
a
,
G4double
b
)
const
;
76
77
78
private
:
79
80
G4GaussChebyshevQ
(
const
G4GaussChebyshevQ
&);
81
G4GaussChebyshevQ
& operator=(
const
G4GaussChebyshevQ
&);
82
83
};
84
85
#endif
test.a
tuple a
Definition:
test.py:11
G4GaussChebyshevQ::~G4GaussChebyshevQ
~G4GaussChebyshevQ()
Definition:
G4GaussChebyshevQ.cc:54
G4int
int G4int
Definition:
G4Types.hh:78
G4VGaussianQuadrature
Definition:
G4VGaussianQuadrature.hh:66
G4VGaussianQuadrature.hh
test.b
tuple b
Definition:
test.py:12
G4GaussChebyshevQ::G4GaussChebyshevQ
G4GaussChebyshevQ(function pFunction, G4int nChebyshev)
Definition:
G4GaussChebyshevQ.cc:36
G4GaussChebyshevQ::Integral
G4double Integral(G4double a, G4double b) const
Definition:
G4GaussChebyshevQ.cc:64
G4double
double G4double
Definition:
G4Types.hh:76
G4GaussChebyshevQ
Definition:
G4GaussChebyshevQ.hh:63
Generated on Sat Dec 14 2013 14:34:15 for Geant4_10 by
1.8.5