Geant4_10
G4GammaXTRadiator.hh
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: G4GammaXTRadiator.hh 68037 2013-03-13 14:15:08Z gcosmo $
28 //
29 //
31 //
32 // Rough process describing a radiator of X-ray transition radiation.
33 // Thicknesses of plates and gas gaps are distributed according to gamma
34 // distribution. x are thicknesses of plates or gas gaps:
35 //
36 // p(x) = (alpha/<x>)^alpha * x^(alpha-1) * std::exp(-alpha*x/<x>) / G(alpha)
37 //
38 // G(alpha) is Euler's gamma function.
39 // Plates have mean <x> = fPlateThick > 0 and power alpha = fAlphaPlate > 0 :
40 // Gas gaps have mean <x> = fGasThick > 0 and power alpha = fAlphaGas > 0 :
41 // We suppose that:
42 // formation zone ~ mean thickness << absorption length
43 // for each material and in the range 1-100 keV. This allows us to simplify
44 // interference effects in radiator stack (GetStackFactor method).
45 //
46 //
47 // History:
48 // 21.01.02 V. Grichine, first version
49 //
50 
51 
52 #ifndef G4GammaXTRadiator_h
53 #define G4GammaXTRadiator_h 1
54 
55 #include "G4VXTRenergyLoss.hh"
56 
58 {
59 public:
60 
65  const G4String & processName = "XTRgammaRadiator");
67 
68  // Pure virtual function from base class
69 
71 
72 private:
73 
74 };
75 
76 #endif
77 
78 
79 
80 
81 
82 
G4GammaXTRadiator(G4LogicalVolume *anEnvelope, G4double, G4double, G4Material *, G4Material *, G4double, G4double, G4int, const G4String &processName="XTRgammaRadiator")
int G4int
Definition: G4Types.hh:78
double energy
Definition: plottest35.C:25
G4double GetStackFactor(G4double energy, G4double gamma, G4double varAngle)
double G4double
Definition: G4Types.hh:76