Geant4_10
G4GEMCoulombBarrier.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // J. M. Quesada (July 2009): New class based on G4GEMCoulombBarrierHE
27 // Coded strictly according to Furihata's GEM paper
28 // NEW:effective decrease of barrier with E* (Barashenkov) has been added
29 //
30 #include "G4GEMCoulombBarrier.hh"
31 #include "G4HadronicException.hh"
32 #include "G4Pow.hh"
33 #include "G4PhysicalConstants.hh"
34 #include "G4SystemOfUnits.hh"
35 
37  G4VCoulombBarrier(anA,aZ)
38 {}
39 
41 {}
42 
44 // Calculation of Coulomb potential energy (barrier) for outgoing fragment
45 {
46  G4double Barrier = 0.0;
47  if (ZRes > ARes || ARes < 1) {
48  G4cout << "G4GEMCoulombBarrier::GetCoulombBarrier: "
49  << "Wrong values for "
50  << "residual nucleus A = " << ARes << " "
51  << "and residual nucleus Z = " << ZRes << G4endl;
52  throw G4HadronicException(__FILE__, __LINE__,"FATAL error");
53  }
54  if (GetZ() == 0) {
55  Barrier = 0.0; // If there is no charge there is neither barrier
56 
57  } else {
58  G4double CompoundRadius = CalcCompoundRadius(ARes);
59  Barrier = ( elm_coupling * GetZ() * ZRes)/CompoundRadius;
60 
61  // Barrier penetration coeficient
62  if(GetA() <= 4) { Barrier *= BarrierPenetrationFactor(G4double(ZRes)); }
63 
64  //JMQ 200709 effective decrease of barrier with E* (Barashenkov)
65  // (not inclued in original Furihata's formulation)
66  Barrier /= (1.0 + std::sqrt(U/(static_cast<G4double>(2*ARes))));
67  }
68  return Barrier;
69 }
70 
72 {
73  G4Pow* g4pow = G4Pow::GetInstance();
74  G4double AresOneThird = g4pow->Z13(ARes);
75  G4int A = GetA();
76  G4double AejectOneThird = g4pow->Z13(A);
77 
78  G4double Result = 0.0;
79  if(A == 1){
80  Result = 1.7* AresOneThird;
81 
82  } else if (A <= 4){
83  Result = 1.7* AresOneThird + 1.2;
84 
85  } else {
86  Result = 1.12*(AresOneThird + AejectOneThird) -
87  0.86*(AresOneThird+AejectOneThird)/(AresOneThird*AejectOneThird)+3.75;
88  }
89  return Result*fermi;
90 }
91 
92 
static G4Pow * GetInstance()
Definition: G4Pow.cc:53
Definition: G4Pow.hh:56
G4double CalcCompoundRadius(G4int ARes) const
G4int GetA(void) const
tuple elm_coupling
Definition: hepunit.py:286
int G4int
Definition: G4Types.hh:78
G4GLOB_DLL std::ostream G4cout
G4double Z13(G4int Z) const
Definition: G4Pow.hh:129
G4double GetCoulombBarrier(G4int ARes, G4int ZRes, G4double U) const
#define G4endl
Definition: G4ios.hh:61
G4GEMCoulombBarrier(G4int anA, G4int aZ)
double G4double
Definition: G4Types.hh:76