65 leptonKE(0.0), photonEnergy(0.0), photonQ2(0.0)
95 delete theFragmentation;
96 delete theStringDecay;
97 delete theStringModel;
104 outFile <<
"G4ElectroVDNuclearModel handles the inelastic scattering\n"
105 <<
"of e- and e+ from nuclei using the equivalent photon\n"
106 <<
"approximation in which the incoming lepton generates a\n"
107 <<
"virtual photon at the electromagnetic vertex, and the\n"
108 <<
"virtual photon is converted to a real photon. At low\n"
109 <<
"energies, the photon interacts directly with the nucleus\n"
110 <<
"using the Bertini cascade. At high energies the photon\n"
111 <<
"is converted to a pi0 which interacts using the FTFP\n"
112 <<
"model. The electro- and gamma-nuclear cross sections of\n"
113 <<
"M. Kossov are used to generate the virtual photon spectrum\n";
138 if (photonEnergy < leptonKE) {
142 if (photonEnergy > photonQ2/dM) {
146 if (transferredPhoton) CalculateHadronicVertex(transferredPhoton, targetNucleus);
154 G4ElectroVDNuclearModel::CalculateEMVertex(
const G4HadProjectile& aTrack,
168 photon.SetKineticEnergy(photonEnergy - photonQ2/dM);
180 G4double finE = iniE - photonEnergy;
182 G4double iniP = std::sqrt(iniE*iniE-mProj2);
183 G4double finP = std::sqrt(finE*finE-mProj2);
184 G4double cost = (iniE*finE - mProj2 - photonQ2/2.)/iniP/finP;
185 if (cost > 1.) cost= 1.;
186 if (cost < -1.) cost=-1.;
187 G4double sint = std::sqrt(1.-cost*cost);
201 photonEnergy, photonMomentum);
213 if (gammaE < 10*
GeV) {
219 G4double piMom = std::sqrt(gammaE*gammaE - piMass*piMass);
~G4ElectroVDNuclearModel()
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &theNucleus)
void AddSecondaries(const std::vector< G4HadSecondary > &addSecs)
virtual void ModelDescription(std::ostream &outFile) const
CLHEP::Hep3Vector G4ThreeVector
G4double GetTotalEnergy() const
void SetFragmentationModel(G4VStringFragmentation *aModel)
G4double GetEquivalentPhotonQ2(G4double nu)
static const char * Default_Name()
G4ElectroVDNuclearModel()
void SetHighEnergyGenerator(G4VHighEnergyGenerator *const value)
G4double GetEquivalentPhotonEnergy()
void SetStatusChange(G4HadFinalStateStatus aS)
void SetMinEnergy(G4double anEnergy)
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &aTargetNucleus)
const G4ParticleDefinition * GetDefinition() const
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
static G4CrossSectionDataSetRegistry * Instance()
static G4Proton * Proton()
static G4Neutron * Neutron()
const G4LorentzVector & Get4Momentum() const
static G4PionZero * PionZero()
virtual G4double GetElementCrossSection(const G4DynamicParticle *, G4int Z, const G4Material *)
void SetEnergyChange(G4double anEnergy)
G4double GetPDGMass() const
G4double GetVirtualFactor(G4double nu, G4double Q2)
virtual G4double GetElementCrossSection(const G4DynamicParticle *, G4int Z, const G4Material *mat)
Hep3Vector orthogonal() const
void SetMaxEnergy(const G4double anEnergy)
void SetDeExcitation(G4VPreCompoundModel *ptr)
G4HadFinalState theParticleChange
void SetTransport(G4VIntraNuclearTransportModel *const value)
Hep3Vector cross(const Hep3Vector &) const
static const char * Default_Name()
void SetMomentumChange(const G4ThreeVector &aV)
G4HadFinalState * ApplyYourself(const G4HadProjectile &thePrimary, G4Nucleus &theNucleus)