Geant4_10
G4DNARuddIonisationModel.hh
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4DNARuddIonisationModel.hh 70171 2013-05-24 13:34:18Z gcosmo $
27 //
28 
29 #ifndef G4DNARuddIonisationModel_h
30 #define G4DNARuddIonisationModel_h 1
31 
32 #include "G4VEmModel.hh"
34 #include "G4ProductionCutsTable.hh"
35 
38 #include "G4Electron.hh"
39 #include "G4Proton.hh"
40 #include "G4LogLogInterpolation.hh"
41 
43 #include "G4VAtomDeexcitation.hh"
44 #include "G4NistManager.hh"
45 
47 {
48 
49 public:
50 
52  const G4String& nam = "DNARuddIonisationModel");
53 
54  virtual ~G4DNARuddIonisationModel();
55 
56  virtual void Initialise(const G4ParticleDefinition*, const G4DataVector&);
57 
59  const G4ParticleDefinition* p,
60  G4double ekin,
61  G4double emin,
62  G4double emax);
63 
64  virtual void SampleSecondaries(std::vector<G4DynamicParticle*>*,
65  const G4MaterialCutsCouple*,
66  const G4DynamicParticle*,
67  G4double tmin,
68  G4double maxEnergy);
69 
70 protected:
71 
73 
74 private:
75  // Water density table
76  const std::vector<G4double>* fpWaterDensity;
77 
78  //deexcitation manager to produce fluo photns and e-
79  G4VAtomDeexcitation* fAtomDeexcitation;
80 
81  std::map<G4String,G4double,std::less<G4String> > lowEnergyLimit;
82  std::map<G4String,G4double,std::less<G4String> > highEnergyLimit;
83 
84  G4double lowEnergyLimitForZ1;
85  G4double lowEnergyLimitForZ2;
86  G4double lowEnergyLimitOfModelForZ1;
87  G4double lowEnergyLimitOfModelForZ2;
88  G4double killBelowEnergyForZ1;
89  G4double killBelowEnergyForZ2;
90 
91  G4bool isInitialised;
92  G4int verboseLevel;
93 
94  // Cross section
95 
96  typedef std::map<G4String,G4String,std::less<G4String> > MapFile;
97  MapFile tableFile;
98 
99  typedef std::map<G4String,G4DNACrossSectionDataSet*,std::less<G4String> > MapData;
100  MapData tableData;
101 
102  // Final state
103 
104  G4DNAWaterIonisationStructure waterStructure;
105 
106  G4double RandomizeEjectedElectronEnergy(G4ParticleDefinition* particleDefinition,
107  G4double incomingParticleEnergy,
108  G4int shell);
109 
110  void RandomizeEjectedElectronDirection(G4ParticleDefinition* particleDefinition,
111  G4double incomingParticleEnergy,
112  G4double outgoingParticleEnergy,
113  G4double & cosTheta,
114  G4double & phi);
115 
116  G4double DifferentialCrossSection(G4ParticleDefinition* particleDefinition,
117  G4double k,
118  G4double energyTransfer,
119  G4int shell);
120 
121  G4double CorrectionFactor(G4ParticleDefinition* particleDefinition, G4double k);
122 
123  G4double S_1s(G4double t,
124  G4double energyTransferred,
125  G4double slaterEffectiveChg,
126  G4double shellNumber);
127 
128  G4double S_2s(G4double t,
129  G4double energyTransferred,
130  G4double slaterEffectiveChg,
131  G4double shellNumber);
132 
133 
134  G4double S_2p(G4double t,
135  G4double energyTransferred,
136  G4double slaterEffectiveChg,
137  G4double shellNumber);
138 
139  G4double R(G4double t,
140  G4double energyTransferred,
141  G4double slaterEffectiveChg,
142  G4double shellNumber) ;
143 
144  G4double slaterEffectiveCharge[3];
145  G4double sCoefficient[3];
146 
147  // Partial cross section
148 
149  G4double PartialCrossSection(const G4Track& track);
150 
151  G4double Sum(G4double energy, const G4String& particle);
152 
153  G4int RandomSelect(G4double energy,const G4String& particle );
154 
155  //
156 
159 
160 };
161 
162 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
163 
164 #endif
G4ParticleChangeForGamma * fParticleChangeForGamma
const char * p
Definition: xmltok.h:285
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
int G4int
Definition: G4Types.hh:78
G4DNARuddIonisationModel(const G4ParticleDefinition *p=0, const G4String &nam="DNARuddIonisationModel")
string material
Definition: eplot.py:19
double energy
Definition: plottest35.C:25
bool G4bool
Definition: G4Types.hh:79
double G4double
Definition: G4Types.hh:76
virtual G4double CrossSectionPerVolume(const G4Material *material, const G4ParticleDefinition *p, G4double ekin, G4double emin, G4double emax)