Geant4_10
G4ChipsProtonInelasticXS.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // The lust update: M.V. Kossov, CERN/ITEP(Moscow) 17-June-02
28 //
29 //
30 // G4 Physics class: G4ChipsProtonInelasticXS for gamma+A cross sections
31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 20-Dec-03
32 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 15-Feb-04
33 //
34 //
35 // ****************************************************************************************
36 // Short description: Cross-sections extracted (by W.Pokorski) from the CHIPS package for
37 // proton-nuclear interactions. Original author: M. Kossov
38 // -------------------------------------------------------------------------------------
39 //
40 
41 
43 #include "G4SystemOfUnits.hh"
44 #include "G4DynamicParticle.hh"
45 #include "G4ParticleDefinition.hh"
46 #include "G4Proton.hh"
47 
48 // factory
49 #include "G4CrossSectionFactory.hh"
50 //
52 
54 {
55  // Initialization of the
56  lastLEN=0; // Pointer to the lastArray of LowEn CS
57  lastHEN=0; // Pointer to the lastArray of HighEn CS
58  lastN=0; // The last N of calculated nucleus
59  lastZ=0; // The last Z of calculated nucleus
60  lastP=0.; // Last used in cross section Momentum
61  lastTH=0.; // Last threshold momentum
62  lastCS=0.; // Last value of the Cross Section
63  lastI=0; // The last position in the DAMDB
64 
65  LEN = new std::vector<G4double*>;
66  HEN = new std::vector<G4double*>;
67 }
68 
70 {
71  /*
72  G4int lens=LEN->size();
73  for(G4int i=0; i<lens; ++i) delete[] (*LEN)[i];
74  delete LEN;
75  G4int hens=HEN->size();
76  for(G4int i=0; i<hens; ++i) delete[] (*HEN)[i];
77  delete HEN;
78  */
79 }
80 
82  const G4Element*,
83  const G4Material*)
84 {
85  G4ParticleDefinition* particle = Pt->GetDefinition();
86  if (particle == G4Proton::Proton() ) return true;
87  return false;
88 }
89 
90 
91 // The main member function giving the collision cross section (P is in IU, CS is in mb)
92 // Make pMom in independent units ! (Now it is MeV)
94  const G4Isotope*,
95  const G4Element*,
96  const G4Material*)
97 {
98  G4double pMom=Pt->GetTotalMomentum();
99  G4int tgN = A - tgZ;
100 
101  return GetChipsCrossSection(pMom, tgZ, tgN, 2212);
102 }
103 
105 {
106  static G4ThreadLocal G4int j; // A#0f Z/N-records already tested in AMDB
107  static G4ThreadLocal std::vector <G4int> *colN_G4MT_TLS_ = 0 ; if (!colN_G4MT_TLS_) colN_G4MT_TLS_ = new std::vector <G4int> ; std::vector <G4int> &colN = *colN_G4MT_TLS_; // Vector of N for calculated nuclei (isotops)
108  static G4ThreadLocal std::vector <G4int> *colZ_G4MT_TLS_ = 0 ; if (!colZ_G4MT_TLS_) colZ_G4MT_TLS_ = new std::vector <G4int> ; std::vector <G4int> &colZ = *colZ_G4MT_TLS_; // Vector of Z for calculated nuclei (isotops)
109  static G4ThreadLocal std::vector <G4double> *colP_G4MT_TLS_ = 0 ; if (!colP_G4MT_TLS_) colP_G4MT_TLS_ = new std::vector <G4double> ; std::vector <G4double> &colP = *colP_G4MT_TLS_; // Vector of last momenta for the reaction
110  static G4ThreadLocal std::vector <G4double> *colTH_G4MT_TLS_ = 0 ; if (!colTH_G4MT_TLS_) colTH_G4MT_TLS_ = new std::vector <G4double> ; std::vector <G4double> &colTH = *colTH_G4MT_TLS_; // Vector of energy thresholds for the reaction
111  static G4ThreadLocal std::vector <G4double> *colCS_G4MT_TLS_ = 0 ; if (!colCS_G4MT_TLS_) colCS_G4MT_TLS_ = new std::vector <G4double> ; std::vector <G4double> &colCS = *colCS_G4MT_TLS_; // Vector of last cross sections for the reaction
112  // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---***
113 
114  G4bool in=false; // By default the isotope must be found in the AMDB
115  if(tgN!=lastN || tgZ!=lastZ) // The nucleus was not the last used isotope
116  {
117  in = false; // By default the isotope haven't been found in AMDB
118  lastP = 0.; // New momentum history (nothing to compare with)
119  lastN = tgN; // The last N of the calculated nucleus
120  lastZ = tgZ; // The last Z of the calculated nucleus
121  lastI = colN.size(); // Size of the Associative Memory DB in the heap
122  j = 0; // A#0f records found in DB for this projectile
123  if(lastI) for(G4int i=0; i<lastI; i++) // AMDB exists, try to find the (Z,N) isotope
124  {
125  if(colN[i]==tgN && colZ[i]==tgZ) // Try the record "i" in the AMDB
126  {
127  lastI=i; // Remember the index for future fast/last use
128  lastTH =colTH[i]; // The last THreshold (A-dependent)
129  if(pMom<=lastTH)
130  {
131  return 0.; // Energy is below the Threshold value
132  }
133  lastP =colP [i]; // Last Momentum (A-dependent)
134  lastCS =colCS[i]; // Last CrossSect (A-dependent)
135  in = true; // This is the case when the isotop is found in DB
136  // Momentum pMom is in IU ! @@ Units
137  lastCS=CalculateCrossSection(-1,j,2212,lastZ,lastN,pMom); // read & update
138  if(lastCS<=0. && pMom>lastTH) // Correct the threshold (@@ No intermediate Zeros)
139  {
140  lastCS=0.;
141  lastTH=pMom;
142  }
143  break; // Go out of the LOOP
144  }
145  j++; // Increment a#0f records found in DB
146  }
147  if(!in) // This isotope has not been calculated previously
148  {
150  lastCS=CalculateCrossSection(0,j,2212,lastZ,lastN,pMom); //calculate & create
151  //if(lastCS>0.) // It means that the AMBD was initialized
152  //{
153 
154  lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
155  colN.push_back(tgN);
156  colZ.push_back(tgZ);
157  colP.push_back(pMom);
158  colTH.push_back(lastTH);
159  colCS.push_back(lastCS);
160  //} // M.K. Presence of H1 with high threshold breaks the syncronization
161  return lastCS*millibarn;
162  } // End of creation of the new set of parameters
163  else
164  {
165  colP[lastI]=pMom;
166  colCS[lastI]=lastCS;
167  }
168  } // End of parameters udate
169  else if(pMom<=lastTH)
170  {
171  return 0.; // Momentum is below the Threshold Value -> CS=0
172  }
173  else // It is the last used -> use the current tables
174  {
175  lastCS=CalculateCrossSection(1,j,2212,lastZ,lastN,pMom); // Only read and UpdateDB
176  lastP=pMom;
177  }
178  return lastCS*millibarn;
179 }
180 
181 // The main member function giving the gamma-A cross section (E in GeV, CS in mb)
182 G4double G4ChipsProtonInelasticXS::CalculateCrossSection(G4int F, G4int I,
183  G4int, G4int targZ, G4int targN, G4double Momentum)
184 {
185  static const G4double THmin=27.; // default minimum Momentum (MeV/c) Threshold
186  static const G4double THmiG=THmin*.001; // minimum Momentum (GeV/c) Threshold
187  static const G4double dP=10.; // step for the LEN (Low ENergy) table MeV/c
188  static const G4double dPG=dP*.001; // step for the LEN (Low ENergy) table GeV/c
189  static const G4int nL=105; // A#of LEN points in E (step 10 MeV/c)
190  static const G4double Pmin=THmin+(nL-1)*dP; // minP for the HighE part with safety
191  static const G4double Pmax=227000.; // maxP for the HEN (High ENergy) part 227 GeV
192  static const G4int nH=224; // A#of HEN points in lnE
193  static const G4double milP=std::log(Pmin);// Low logarithm energy for the HEN part
194  static const G4double malP=std::log(Pmax);// High logarithm energy (each 2.75 percent)
195  static const G4double dlP=(malP-milP)/(nH-1); // Step in log energy in the HEN part
196  static const G4double milPG=std::log(.001*Pmin);// Low logarithmEnergy for HEN part GeV/c
197  G4double sigma=0.;
198  if(F&&I) sigma=0.; // @@ *!* Fake line *!* to use F & I !!!Temporary!!!
199  //G4double A=targN+targZ; // A of the target
200  if(F<=0) // This isotope was not the last used isotop
201  {
202  if(F<0) // This isotope was found in DAMDB =-----=> RETRIEVE
203  {
204  G4int sync=LEN->size();
205  if(sync<=I) G4cout<<"*!*G4QProtonNuclCS::CalcCrossSect:Sync="<<sync<<"<="<<I<<G4endl;
206  lastLEN=(*LEN)[I]; // Pointer to prepared LowEnergy cross sections
207  lastHEN=(*HEN)[I]; // Pointer to prepared High Energy cross sections
208  }
209  else // This isotope wasn't calculated before => CREATE
210  {
211  lastLEN = new G4double[nL]; // Allocate memory for the new LEN cross sections
212  lastHEN = new G4double[nH]; // Allocate memory for the new HEN cross sections
213  // --- Instead of making a separate function ---
214  G4double P=THmiG; // Table threshold in GeV/c
215  for(G4int k=0; k<nL; k++)
216  {
217  lastLEN[k] = CrossSectionLin(targZ, targN, P);
218  P+=dPG;
219  }
220  G4double lP=milPG;
221  for(G4int n=0; n<nH; n++)
222  {
223  lastHEN[n] = CrossSectionLog(targZ, targN, lP);
224  lP+=dlP;
225  }
226  // --- End of possible separate function
227  // *** The synchronization check ***
228  G4int sync=LEN->size();
229  if(sync!=I)
230  {
231  G4cout<<"***G4ChipsProtonNuclCS::CalcCrossSect: Sinc="<<sync<<"#"<<I<<", Z=" <<targZ
232  <<", N="<<targN<<", F="<<F<<G4endl;
233  //G4Exception("G4ProtonNuclearCS::CalculateCS:","39",FatalException,"overflow DB");
234  }
235  LEN->push_back(lastLEN); // remember the Low Energy Table
236  HEN->push_back(lastHEN); // remember the High Energy Table
237  } // End of creation of the new set of parameters
238  } // End of parameters udate
239  // =------------------= NOW the Magic Formula =-----------------------=
240  if (Momentum<lastTH) return 0.; // It must be already checked in the interface class
241  else if (Momentum<Pmin) // High Energy region
242  {
243  sigma=EquLinearFit(Momentum,nL,THmin,dP,lastLEN);
244  }
245  else if (Momentum<Pmax) // High Energy region
246  {
247  G4double lP=std::log(Momentum);
248  sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN);
249  }
250  else // UHE region (calculation, not frequent)
251  {
252  G4double P=0.001*Momentum; // Approximation formula is for P in GeV/c
253  sigma=CrossSectionFormula(targZ, targN, P, std::log(P));
254  }
255  if(sigma<0.) return 0.;
256  return sigma;
257 }
258 
259 // Electromagnetic momentum-threshold (in MeV/c)
260 G4double G4ChipsProtonInelasticXS::ThresholdMomentum(G4int tZ, G4int tN)
261 {
262  static const G4double third=1./3.;
263  static const G4double pM = G4Proton::Proton()->Definition()->GetPDGMass(); // Projectile mass in MeV
264  static const G4double tpM= pM+pM; // Doubled projectile mass (MeV)
265 
266  G4double tA=tZ+tN;
267  if(tZ<.99 || tN<0.) return 0.;
268  else if(tZ==1 && tN==0) return 800.; // A threshold on the free proton
269  //G4double dE=1.263*tZ/(1.+std::pow(tA,third));
270  G4double dE=tZ/(1.+std::pow(tA,third)); // Safety for diffused edge of the nucleus (QE)
271  G4double tM=931.5*tA;
272  G4double T=dE+dE*(dE/2+pM)/tM;
273  return std::sqrt(T*(tpM+T));
274 }
275 
276 // Calculation formula for proton-nuclear inelastic cross-section (mb) (P in GeV/c)
277 G4double G4ChipsProtonInelasticXS::CrossSectionLin(G4int tZ, G4int tN, G4double P)
278 {
279  G4double sigma=0.;
280  if(P<ThresholdMomentum(tZ,tN)*.001) return sigma;
281  G4double lP=std::log(P);
282  if(tZ==1&&!tN){if(P>.35) sigma=CrossSectionFormula(tZ,tN,P,lP);}// s(pp)=0 below 350Mev/c
283  else if(tZ<97 && tN<152) // General solution
284  {
285  G4double pex=0.;
286  G4double pos=0.;
287  G4double wid=1.;
288  if(tZ==13 && tN==14) // Excited metastable states
289  {
290  pex=230.;
291  pos=.13;
292  wid=8.e-5;
293  }
294  else if(tZ<7)
295  {
296  if(tZ==6 && tN==6)
297  {
298  pex=320.;
299  pos=.14;
300  wid=7.e-6;
301  }
302  else if(tZ==5 && tN==6)
303  {
304  pex=270.;
305  pos=.17;
306  wid=.002;
307  }
308  else if(tZ==4 && tN==5)
309  {
310  pex=600.;
311  pos=.132;
312  wid=.005;
313  }
314  else if(tZ==3 && tN==4)
315  {
316  pex=280.;
317  pos=.19;
318  wid=.0025;
319  }
320  else if(tZ==3 && tN==3)
321  {
322  pex=370.;
323  pos=.171;
324  wid=.006;
325  }
326  else if(tZ==2 && tN==1)
327  {
328  pex=30.;
329  pos=.22;
330  wid=.0005;
331  }
332  }
333  sigma=CrossSectionFormula(tZ,tN,P,lP);
334  if(pex>0.)
335  {
336  G4double dp=P-pos;
337  sigma+=pex*std::exp(-dp*dp/wid);
338  }
339  }
340  else
341  {
342  G4cerr<<"-Warning-G4ChipsProtonNuclearXS::CSLin:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl;
343  sigma=0.;
344  }
345  if(sigma<0.) return 0.;
346  return sigma;
347 }
348 
349 // Calculation formula for proton-nuclear inelastic cross-section (mb) log(P in GeV/c)
350 G4double G4ChipsProtonInelasticXS::CrossSectionLog(G4int tZ, G4int tN, G4double lP)
351 {
352  G4double P=std::exp(lP);
353  return CrossSectionFormula(tZ, tN, P, lP);
354 }
355 // Calculation formula for proton-nuclear inelastic cross-section (mb) log(P in GeV/c)
356 G4double G4ChipsProtonInelasticXS::CrossSectionFormula(G4int tZ, G4int tN,
357  G4double P, G4double lP)
358 {
359  G4double sigma=0.;
360  if(tZ==1 && !tN) // pp interaction (from G4QuasiElasticRatios)
361  {
362  G4double El(0.),To(0.); // Uzhi
363  if(P<0.1) // Copied from G4QuasiElasticRatios Uzhi / start
364  {
365  G4double p2=P*P;
366  El=1./(0.00012+p2*0.2);
367  To=El;
368  }
369  else if(P>1000.)
370  {
371  G4double lp=std::log(P)-3.5;
372  G4double lp2=lp*lp;
373  El=0.0557*lp2+6.72;
374  To=0.3*lp2+38.2;
375  }
376  else
377  {
378  G4double p2=P*P;
379  G4double LE=1./(0.00012+p2*0.2);
380  G4double lp=std::log(P)-3.5;
381  G4double lp2=lp*lp;
382  G4double rp2=1./p2;
383  El=LE+(0.0557*lp2+6.72+32.6/P)/(1.+rp2/P);
384  To=LE+(0.3 *lp2+38.2+52.7*rp2)/(1.+2.72*rp2*rp2);
385  } // Copied from G4QuasiElasticRatios Uzhi / end
386 
387 /* // Uzhi 4.03.2013
388  G4double p2=P*P;
389  G4double lp=lP-3.5;
390  G4double lp2=lp*lp;
391  G4double rp2=1./p2;
392  G4double El=(.0557*lp2+6.72+30./P)/(1.+.49*rp2/P);
393  G4double To=(.3*lp2+38.2)/(1.+.54*rp2*rp2);
394 */ // Uzhi 4.03.2013
395 
396  sigma=To-El;
397  }
398  else if(tZ<97 && tN<152) // General solution
399  {
400  //G4double lP=std::log(P); // Already calculated
401  G4double d=lP-4.2;
402  G4double p2=P*P;
403  G4double p4=p2*p2;
404  G4double a=tN+tZ; // A of the target
405  G4double al=std::log(a);
406  G4double sa=std::sqrt(a);
407  G4double a2=a*a;
408  G4double a2s=a2*sa;
409  G4double a4=a2*a2;
410  G4double a8=a4*a4;
411  G4double a12=a8*a4;
412  G4double a16=a8*a8;
413  G4double c=(170.+3600./a2s)/(1.+65./a2s);
414  G4double dl=al-3.;
415  G4double dl2=dl*dl;
416  G4double r=.21+.62*dl2/(1.+.5*dl2);
417  G4double gg=40.*std::exp(al*0.712)/(1.+12.2/a)/(1.+34./a2);
418  G4double e=318.+a4/(1.+.0015*a4/std::exp(al*0.09))/(1.+4.e-28*a12)+
419  8.e-18/(1./a16+1.3e-20)/(1.+1.e-21*a12);
420  G4double ss=3.57+.009*a2/(1.+.0001*a2*a);
421  G4double h=(.01/a4+2.5e-6/a)*(1.+6.e-6*a2*a)/(1.+6.e7/a12/a2);
422  sigma=(c+d*d)/(1.+r/p4)+(gg+e*std::exp(-ss*P))/(1.+h/p4/p4);
423  }
424  else
425  {
426  G4cerr<<"-Warning-G4QProtonNuclearCroSect::CSForm:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl;
427  sigma=0.;
428  }
429  if(sigma<0.) return 0.;
430  return sigma;
431 }
432 
433 G4double G4ChipsProtonInelasticXS::EquLinearFit(G4double X, G4int N, G4double X0, G4double DX, G4double* Y)
434 {
435  if(DX<=0. || N<2)
436  {
437  G4cerr<<"***G4ChipsProtonInelasticXS::EquLinearFit: DX="<<DX<<", N="<<N<<G4endl;
438  return Y[0];
439  }
440 
441  G4int N2=N-2;
442  G4double d=(X-X0)/DX;
443  G4int j=static_cast<int>(d);
444  if (j<0) j=0;
445  else if(j>N2) j=N2;
446  d-=j; // excess
447  G4double yi=Y[j];
448  G4double sigma=yi+(Y[j+1]-yi)*d;
449 
450  return sigma;
451 }
tuple a
Definition: test.py:11
Float_t d
Definition: plot.C:237
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
ifstream in
Definition: comparison.C:7
Float_t Y
Definition: plot.C:39
G4ParticleDefinition * GetDefinition() const
#define G4ThreadLocal
Definition: tls.hh:52
int G4int
Definition: G4Types.hh:78
int millibarn
Definition: hepunit.py:40
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
Float_t X
Definition: plot.C:39
G4double GetTotalMomentum() const
static G4Proton * Definition()
Definition: G4Proton.cc:49
Char_t n[5]
G4GLOB_DLL std::ostream G4cout
bool G4bool
Definition: G4Types.hh:79
static G4Proton * Proton()
Definition: G4Proton.cc:93
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
jump r
Definition: plot.C:36
#define G4_DECLARE_XS_FACTORY(cross_section)
G4double GetPDGMass() const
#define G4endl
Definition: G4ios.hh:61
**D E S C R I P T I O N
Definition: HEPEvtcom.cc:77
Definition: Evaluator.cc:66
double G4double
Definition: G4Types.hh:76
tuple c
Definition: test.py:13
G4GLOB_DLL std::ostream G4cerr