Geant4_10
G4ChipsKaonPlusInelasticXS.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // The lust update: M.V. Kossov, CERN/ITEP(Moscow) 17-June-02
28 //
29 //
30 // G4 Physics class: G4QKaonPlusNuclearCrossSection for gamma+A cross sections
31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 20-Dec-03
32 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 15-Feb-04
33 //
34 // --------------------------------------------------------------------------------
35 // Short description: Cross-sections extracted from the CHIPS package for
36 // kaon(minus)-nuclear interactions. Author: M. Kossov
37 // -------------------------------------------------------------------------------------
38 //
39 
41 #include "G4SystemOfUnits.hh"
42 #include "G4DynamicParticle.hh"
43 #include "G4ParticleDefinition.hh"
44 #include "G4KaonPlus.hh"
45 #include "G4Proton.hh"
46 #include "G4PionPlus.hh"
47 #include "G4AutoLock.hh"
48 
49 // factory
50 #include "G4CrossSectionFactory.hh"
51 //
53 
54 namespace {
55  const G4double THmin=27.; // default minimum Momentum (MeV/c) Threshold
56  const G4double THmiG=THmin*.001; // minimum Momentum (GeV/c) Threshold
57  const G4double dP=10.; // step for the LEN (Low ENergy) table MeV/c
58  const G4double dPG=dP*.001; // step for the LEN (Low ENergy) table GeV/c
59  const G4int nL=105; // A#of LEN points in E (step 10 MeV/c)
60  const G4double Pmin=THmin+(nL-1)*dP; // minP for the HighE part with safety
61  const G4double Pmax=227000.; // maxP for the HEN (High ENergy) part 227 GeV
62  const G4int nH=224; // A#of HEN points in lnE
63  const G4double milP=std::log(Pmin);// Low logarithm energy for the HEN part
64  const G4double malP=std::log(Pmax);// High logarithm energy (each 2.75 percent)
65  const G4double dlP=(malP-milP)/(nH-1); // Step in log energy in the HEN part
66  const G4double milPG=std::log(.001*Pmin);// Low logarithmEnergy for HEN part GeV/c
67  const G4double third=1./3.;
69  G4double prM;// = G4Proton::Proton()->GetPDGMass(); // Proton mass in MeV
70  G4double piM;// = G4PionPlus::PionPlus()->GetPDGMass()+.1; // Pion mass in MeV+Safety (WP)??
71  G4double pM;// = G4KaonPlus::KaonPlus()->GetPDGMass(); // Projectile mass in MeV
72  G4double tpM;//= pM+pM; // Doubled projectile mass (MeV)
73 }
74 
76 {
77  G4AutoLock l(&initM);
78  prM = G4Proton::Proton()->GetPDGMass(); // Proton mass in MeV
79  piM = G4PionPlus::PionPlus()->GetPDGMass()+.1; // Pion mass in MeV+Safety (WP)??
80  pM = G4KaonPlus::KaonPlus()->GetPDGMass(); // Projectile mass in MeV
81  tpM = pM+pM; // Doubled projectile mass (MeV)
82  l.unlock();
83  // Initialization of the
84  lastLEN=0; // Pointer to the lastArray of LowEn CS
85  lastHEN=0; // Pointer to the lastArray of HighEn CS
86  lastN=0; // The last N of calculated nucleus
87  lastZ=0; // The last Z of calculated nucleus
88  lastP=0.; // Last used in cross section Momentum
89  lastTH=0.; // Last threshold momentum
90  lastCS=0.; // Last value of the Cross Section
91  lastI=0; // The last position in the DAMDB
92  LEN = new std::vector<G4double*>;
93  HEN = new std::vector<G4double*>;
94 }
95 
97 {
98  G4int lens=LEN->size();
99  for(G4int i=0; i<lens; ++i) delete[] (*LEN)[i];
100  delete LEN;
101 
102  G4int hens=HEN->size();
103  for(G4int i=0; i<hens; ++i) delete[] (*HEN)[i];
104  delete HEN;
105 }
106 
107 
109  const G4Element*,
110  const G4Material*)
111 {
112  G4ParticleDefinition* particle = Pt->GetDefinition();
113  if (particle == G4KaonPlus::KaonPlus() ) return true;
114  return false;
115 }
116 
117 
118 // The main member function giving the collision cross section (P is in IU, CS is in mb)
119 // Make pMom in independent units ! (Now it is MeV)
121  const G4Isotope*,
122  const G4Element*,
123  const G4Material*)
124 {
125  G4double pMom=Pt->GetTotalMomentum();
126  G4int tgN = A - tgZ;
127 
128  return GetChipsCrossSection(pMom, tgZ, tgN, 321);
129 }
130 
132 {
133  static G4ThreadLocal G4int j; // A#0f Z/N-records already tested in AMDB
134  static G4ThreadLocal std::vector <G4int> *colN_G4MT_TLS_ = 0 ; if (!colN_G4MT_TLS_) colN_G4MT_TLS_ = new std::vector <G4int> ; std::vector <G4int> &colN = *colN_G4MT_TLS_; // Vector of N for calculated nuclei (isotops)
135  static G4ThreadLocal std::vector <G4int> *colZ_G4MT_TLS_ = 0 ; if (!colZ_G4MT_TLS_) colZ_G4MT_TLS_ = new std::vector <G4int> ; std::vector <G4int> &colZ = *colZ_G4MT_TLS_; // Vector of Z for calculated nuclei (isotops)
136  static G4ThreadLocal std::vector <G4double> *colP_G4MT_TLS_ = 0 ; if (!colP_G4MT_TLS_) colP_G4MT_TLS_ = new std::vector <G4double> ; std::vector <G4double> &colP = *colP_G4MT_TLS_; // Vector of last momenta for the reaction
137  static G4ThreadLocal std::vector <G4double> *colTH_G4MT_TLS_ = 0 ; if (!colTH_G4MT_TLS_) colTH_G4MT_TLS_ = new std::vector <G4double> ; std::vector <G4double> &colTH = *colTH_G4MT_TLS_; // Vector of energy thresholds for the reaction
138  static G4ThreadLocal std::vector <G4double> *colCS_G4MT_TLS_ = 0 ; if (!colCS_G4MT_TLS_) colCS_G4MT_TLS_ = new std::vector <G4double> ; std::vector <G4double> &colCS = *colCS_G4MT_TLS_; // Vector of last cross sections for the reaction
139  // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---***
140 
141  G4bool in=false; // By default the isotope must be found in the AMDB
142  if(tgN!=lastN || tgZ!=lastZ) // The nucleus was not the last used isotope
143  {
144  in = false; // By default the isotope haven't be found in AMDB
145  lastP = 0.; // New momentum history (nothing to compare with)
146  lastN = tgN; // The last N of the calculated nucleus
147  lastZ = tgZ; // The last Z of the calculated nucleus
148  lastI = colN.size(); // Size of the Associative Memory DB in the heap
149  j = 0; // A#0f records found in DB for this projectile
150 
151  if(lastI) for(G4int i=0; i<lastI; i++) // AMDB exists, try to find the (Z,N) isotope
152  {
153  if(colN[i]==tgN && colZ[i]==tgZ) // Try the record "i" in the AMDB
154  {
155  lastI=i; // Remember the index for future fast/last use
156  lastTH =colTH[i]; // The last THreshold (A-dependent)
157 
158  if(pMom<=lastTH)
159  {
160  return 0.; // Energy is below the Threshold value
161  }
162  lastP =colP [i]; // Last Momentum (A-dependent)
163  lastCS =colCS[i]; // Last CrossSect (A-dependent)
164  in = true; // This is the case when the isotop is found in DB
165  // Momentum pMom is in IU ! @@ Units
166  lastCS=CalculateCrossSection(-1,j,321,lastZ,lastN,pMom); // read & update
167 
168  if(lastCS<=0. && pMom>lastTH) // Correct the threshold (@@ No intermediate Zeros)
169  {
170  lastCS=0.;
171  lastTH=pMom;
172  }
173  break; // Go out of the LOOP
174  }
175  j++; // Increment a#0f records found in DB
176  }
177  if(!in) // This isotope has not been calculated previously
178  {
180  lastCS=CalculateCrossSection(0,j,321,lastZ,lastN,pMom); //calculate & create
181 
182  //if(lastCS>0.) // It means that the AMBD was initialized
183  //{
184 
185  lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
186  colN.push_back(tgN);
187  colZ.push_back(tgZ);
188  colP.push_back(pMom);
189  colTH.push_back(lastTH);
190  colCS.push_back(lastCS);
191  //} // M.K. Presence of H1 with high threshold breaks the syncronization
192  return lastCS*millibarn;
193  } // End of creation of the new set of parameters
194  else
195  {
196  colP[lastI]=pMom;
197  colCS[lastI]=lastCS;
198  }
199  } // End of parameters udate
200  else if(pMom<=lastTH)
201  {
202  return 0.; // Momentum is below the Threshold Value -> CS=0
203  }
204  else // It is the last used -> use the current tables
205  {
206  lastCS=CalculateCrossSection(1,j,321,lastZ,lastN,pMom); // Only read and UpdateDB
207  lastP=pMom;
208  }
209  return lastCS*millibarn;
210 }
211 
212 // The main member function giving the gamma-A cross section (E in GeV, CS in mb)
213 G4double G4ChipsKaonPlusInelasticXS::CalculateCrossSection(G4int F, G4int I,
214  G4int, G4int targZ, G4int targN, G4double Momentum)
215 {
216  G4double sigma=0.;
217  if(F&&I) sigma=0.; // @@ *!* Fake line *!* to use F & I !!!Temporary!!!
218  G4double A=targN+targZ; // A of the target
219 
220  if(F<=0) // This isotope was not the last used isotop
221  {
222  if(F<0) // This isotope was found in DAMDB =-----=> RETRIEVE
223  {
224  G4int sync=LEN->size();
225  if(sync<=I) G4cerr<<"*!*G4ChipsKPlusNuclCS::CalcCrosSect:Sync="<<sync<<"<="<<I<<G4endl;
226  lastLEN=(*LEN)[I]; // Pointer to prepared LowEnergy cross sections
227  lastHEN=(*HEN)[I]; // Pointer to prepared High Energy cross sections
228  }
229  else // This isotope wasn't calculated before => CREATE
230  {
231  lastLEN = new G4double[nL]; // Allocate memory for the new LEN cross sections
232  lastHEN = new G4double[nH]; // Allocate memory for the new HEN cross sections
233  // --- Instead of making a separate function ---
234  G4double P=THmiG; // Table threshold in GeV/c
235  for(G4int k=0; k<nL; k++)
236  {
237  lastLEN[k] = CrossSectionLin(targZ, targN, P);
238  P+=dPG;
239  }
240  G4double lP=milPG;
241  for(G4int n=0; n<nH; n++)
242  {
243  lastHEN[n] = CrossSectionLog(targZ, targN, lP);
244  lP+=dlP;
245  }
246  // --- End of possible separate function
247  // *** The synchronization check ***
248  G4int sync=LEN->size();
249  if(sync!=I)
250  {
251  G4cerr<<"***G4ChipsKPlusNuclCS::CalcCrossSect: Sinc="<<sync<<"#"<<I<<", Z=" <<targZ
252  <<", N="<<targN<<", F="<<F<<G4endl;
253  //G4Exception("G4PiMinusNuclearCS::CalculateCS:","39",FatalException,"DBoverflow");
254  }
255  LEN->push_back(lastLEN); // remember the Low Energy Table
256  HEN->push_back(lastHEN); // remember the High Energy Table
257  } // End of creation of the new set of parameters
258  } // End of parameters udate
259  // =--------------------------= NOW the Magic Formula =---------------------------------=
260 
261  if (Momentum<lastTH) return 0.; // It must be already checked in the interface class
262  else if (Momentum<Pmin) // Low Energy region
263  {
264  if(A<=1. && Momentum < 600.) sigma=0.; // Approximation tot/el uncertainty
265  else sigma=EquLinearFit(Momentum,nL,THmin,dP,lastLEN);
266  }
267  else if (Momentum<Pmax) // High Energy region
268  {
269  G4double lP=std::log(Momentum);
270  sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN);
271  }
272  else // UHE region (calculation, not frequent)
273  {
274  G4double P=0.001*Momentum; // Approximation formula is for P in GeV/c
275  sigma=CrossSectionFormula(targZ, targN, P, std::log(P));
276  }
277  if(sigma<0.) return 0.;
278  return sigma;
279 }
280 
281 // Electromagnetic momentum-threshold (in MeV/c)
282 G4double G4ChipsKaonPlusInelasticXS::ThresholdMomentum(G4int tZ, G4int tN)
283 {
284  G4double tA=tZ+tN;
285  if(tZ<.99 || tN<0.) return 0.;
286  G4double tM=931.5*tA;
287  G4double dE=piM; // At least one Pi0 must be created
288  if(tZ==1 && tN==0) tM=prM; // A threshold on the free proton
289  else dE=tZ/(1.+std::pow(tA,third)); // Safety for diffused edge of the nucleus (QE)
290  //G4double dE=1.263*tZ/(1.+std::pow(tA,third));
291  G4double T=dE+dE*(dE/2+pM)/tM;
292  return std::sqrt(T*(tpM+T));
293 }
294 
295 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) (P in GeV/c)
296 G4double G4ChipsKaonPlusInelasticXS::CrossSectionLin(G4int tZ, G4int tN, G4double P)
297 {
298  G4double lP=std::log(P);
299  return CrossSectionFormula(tZ, tN, P, lP);
300 }
301 
302 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
303 G4double G4ChipsKaonPlusInelasticXS::CrossSectionLog(G4int tZ, G4int tN, G4double lP)
304 {
305  G4double P=std::exp(lP);
306  return CrossSectionFormula(tZ, tN, P, lP);
307 }
308 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
309 G4double G4ChipsKaonPlusInelasticXS::CrossSectionFormula(G4int tZ, G4int tN,
310  G4double P, G4double lP)
311 {
312  G4double sigma=0.;
313  if(tZ==1 && !tN) // KPlus-Proton interaction from G4QuasiElRatios
314  {
315  G4double ld=lP-3.5;
316  G4double ld2=ld*ld;
317  G4double sp=std::sqrt(P);
318  G4double p2=P*P;
319  G4double p4=p2*p2;
320  G4double lm=P-1.;
321  G4double md=lm*lm+.372;
322  G4double El=(.0557*ld2+2.23)/(1.-.7/sp+.1/p4);
323  G4double To=(.3*ld2+19.5)/(1.+.46/sp+1.6/p4);
324  sigma=(To-El)+.6/md;
325  }
326  else if(tZ<97 && tN<152) // General solution
327  {
328  G4double p2=P*P;
329  G4double p4=p2*p2;
330  G4double a=tN+tZ; // A of the target
331  G4double al=std::log(a);
332  G4double sa=std::sqrt(a);
333  G4double asa=a*sa;
334  G4double a2=a*a;
335  G4double a3=a2*a;
336  G4double a4=a2*a2;
337  G4double a8=a4*a4;
338  G4double a12=a8*a4;
339  G4double f=.6; // Default values for deutrons
340  G4double r=.5;
341  G4double gg=3.7;
342  G4double c=36.;
343  G4double ss=3.5;
344  G4double t=3.;
345  G4double u=.44;
346  G4double v=5.E-9;
347  if(tZ>1 && tN>1) // More than deuteron
348  {
349  f=1.;
350  r=1./(1.+.007*a2);
351  gg=4.2;
352  c=52.*std::exp(al*.6)*(1.+95./a2)/(1.+9./a)/(1.+46./a2);
353  ss=(40.+.14*a)/(1.+12./a);
354  G4double y=std::exp(al*1.7);
355  t=.185*y/(1.+.00012*y);
356  u=(1.+80./asa)/(1.+200./asa);
357  v=(1.+3.E-6*a4*(1.+6.E-7*a3+4.E10/a12))/a3/20000.;
358  }
359  G4double d=lP-gg;
360  G4double w=P-1.;
361  G4double rD=ss/(w*w+.36);
362  G4double h=P-.44;
363  G4double rR=t/(h*h+u*u);
364  sigma=(f*d*d+c)/(1.+r/std::sqrt(P)+1./p4)+(rD+rR)/(1+v/p4/p4);
365  }
366  else
367  {
368  G4cerr<<"-Warning-G4ChipsKaonPlusNuclearCroSect::CSForm:Bad A, Z="<<tZ<<", N="<<tN<<G4endl;
369  sigma=0.;
370  }
371  if(sigma<0.) return 0.;
372  return sigma;
373 }
374 
375 G4double G4ChipsKaonPlusInelasticXS::EquLinearFit(G4double X, G4int N, G4double X0, G4double DX, G4double* Y)
376 {
377  if(DX<=0. || N<2)
378  {
379  G4cerr<<"***G4ChipsKaonPlusInelasticXS::EquLinearFit: DX="<<DX<<", N="<<N<<G4endl;
380  return Y[0];
381  }
382 
383  G4int N2=N-2;
384  G4double d=(X-X0)/DX;
385  G4int j=static_cast<int>(d);
386  if (j<0) j=0;
387  else if(j>N2) j=N2;
388  d-=j; // excess
389  G4double yi=Y[j];
390  G4double sigma=yi+(Y[j+1]-yi)*d;
391 
392  return sigma;
393 }
tuple a
Definition: test.py:11
Float_t d
Definition: plot.C:237
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
ifstream in
Definition: comparison.C:7
Float_t Y
Definition: plot.C:39
G4ParticleDefinition * GetDefinition() const
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
#define G4ThreadLocal
Definition: tls.hh:52
int G4int
Definition: G4Types.hh:78
int millibarn
Definition: hepunit.py:40
#define G4MUTEX_INITIALIZER
Definition: G4Threading.hh:158
TFile f
Definition: plotHisto.C:6
Float_t X
Definition: plot.C:39
G4double GetTotalMomentum() const
Double_t y
Definition: plot.C:279
Char_t n[5]
bool G4bool
Definition: G4Types.hh:79
static G4Proton * Proton()
Definition: G4Proton.cc:93
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
tuple v
Definition: test.py:18
G4int G4Mutex
Definition: G4Threading.hh:156
jump r
Definition: plot.C:36
#define G4_DECLARE_XS_FACTORY(cross_section)
G4double GetPDGMass() const
#define G4endl
Definition: G4ios.hh:61
**D E S C R I P T I O N
Definition: HEPEvtcom.cc:77
double G4double
Definition: G4Types.hh:76
static G4KaonPlus * KaonPlus()
Definition: G4KaonPlus.cc:113
tuple c
Definition: test.py:13
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
G4GLOB_DLL std::ostream G4cerr