Geant4_10
G4ChipsKaonMinusElasticXS.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: G4ChipsKaonMinusElasticXS.cc 76889 2013-11-18 13:01:55Z gcosmo $
28 //
29 //
30 // G4 Physics class: G4ChipsKaonMinusElasticXS for pA elastic cross sections
31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 5-Feb-2010
32 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 5-Feb-2010
33 //
34 // -------------------------------------------------------------------------------
35 // Short description: Interaction cross-sections for the elastic process.
36 // Class extracted from CHIPS and integrated in Geant4 by W.Pokorski
37 // -------------------------------------------------------------------------------
38 //
39 
41 #include "G4SystemOfUnits.hh"
42 #include "G4DynamicParticle.hh"
43 #include "G4ParticleDefinition.hh"
44 #include "G4KaonMinus.hh"
45 #include "G4Nucleus.hh"
46 #include "G4ParticleTable.hh"
47 #include "G4NucleiProperties.hh"
48 #include "G4IonTable.hh"
49 #include "G4AutoLock.hh"
50 
51 // factory
52 #include "G4CrossSectionFactory.hh"
53 //
55 
56 
57 namespace {
58  G4double mK;//= G4KaonMinus::KaonMinus()->GetPDGMass()*.001; // MeV to GeV//Cannot initialize here, needs particles
59  G4double mK2;//= mK*mK;
62  const G4double third=1./3.;
63  const G4double fifth=1./5.;
64  const G4double sevth=1./7.;
65  const G4double pwd=2727;
66  const G4int n_kmpel=36; // #of parameters for pp-elastic ( < nPoints=128)
67  // -0- -1- -2- -3- -4- -5- -6- -7- -8- -9--10- -11--12-
68  const G4double kmp_el[n_kmpel]={5.2,.0557,3.5,2.23,.7,.075,.004,.39,.000156,.15,1.,.0156,5.,
69  74.,3.,3.4,.2,.17,.001,8.,.055,3.64,5.e-5,4000.,1500.,.46,
70  1.2e6,3.5e6,5.e-5,1.e10,8.5e8,1.e10,1.1,3.4e6,6.8e6,0.};
71  // -13-14--15-16--17--18--19- -20- -21- -22- -23- -24- -25-
72  // -26- -27- -28- -29- -30- -31- -32- -33- -34- -35-
73  const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
74 }
75 
76 G4ChipsKaonMinusElasticXS::G4ChipsKaonMinusElasticXS():G4VCrossSectionDataSet(Default_Name()), nPoints(128), nLast(nPoints-1)
77 {
78  G4AutoLock l(&initM);
79  mK = G4KaonMinus::KaonMinus()->GetPDGMass()*.001;
80  mK2 = mK*mK;
81  l.unlock();
82  lPMin=-8.; //Min tabulatedLogarithmMomentum/D
83  lPMax= 8.; //Max tabulatedLogarithmMomentum/D
84  dlnP=(lPMax-lPMin)/nLast;// LogStep inTable /D
85  onlyCS=true;//Flag toCalculOnlyCS(not Si/Bi)/L
86  lastSIG=0.; //Last calculated cross section /L
87  lastLP=-10.;//LastLog(mom_of IncidentHadron)/L
88  lastTM=0.; //Last t_maximum /L
89  theSS=0.; //TheLastSqSlope of 1st difr.Max/L
90  theS1=0.; //TheLastMantissa of 1st difrMax/L
91  theB1=0.; //TheLastSlope of 1st difructMax/L
92  theS2=0.; //TheLastMantissa of 2nd difrMax/L
93  theB2=0.; //TheLastSlope of 2nd difructMax/L
94  theS3=0.; //TheLastMantissa of 3d difr.Max/L
95  theB3=0.; //TheLastSlope of 3d difruct.Max/L
96  theS4=0.; //TheLastMantissa of 4th difrMax/L
97  theB4=0.; //TheLastSlope of 4th difructMax/L
98  lastTZ=0; // Last atomic number of theTarget
99  lastTN=0; // Last # of neutrons in theTarget
100  lastPIN=0.;// Last initialized max momentum
101  lastCST=0; // Elastic cross-section table
102  lastPAR=0; // ParametersForFunctionCalculation
103  lastSST=0; // E-dep ofSqardSlope of 1st difMax
104  lastS1T=0; // E-dep of mantissa of 1st dif.Max
105  lastB1T=0; // E-dep of the slope of 1st difMax
106  lastS2T=0; // E-dep of mantissa of 2nd difrMax
107  lastB2T=0; // E-dep of the slope of 2nd difMax
108  lastS3T=0; // E-dep of mantissa of 3d difr.Max
109  lastB3T=0; // E-dep of the slope of 3d difrMax
110  lastS4T=0; // E-dep of mantissa of 4th difrMax
111  lastB4T=0; // E-dep of the slope of 4th difMax
112  lastN=0; // The last N of calculated nucleus
113  lastZ=0; // The last Z of calculated nucleus
114  lastP=0.; // LastUsed inCrossSection Momentum
115  lastTH=0.; // Last threshold momentum
116  lastCS=0.; // Last value of the Cross Section
117  lastI=0; // The last position in the DAMDB
118 }
119 
121 {
122  std::vector<G4double*>::iterator pos;
123  for (pos=CST.begin(); pos<CST.end(); pos++)
124  { delete [] *pos; }
125  CST.clear();
126  for (pos=PAR.begin(); pos<PAR.end(); pos++)
127  { delete [] *pos; }
128  PAR.clear();
129  for (pos=SST.begin(); pos<SST.end(); pos++)
130  { delete [] *pos; }
131  SST.clear();
132  for (pos=S1T.begin(); pos<S1T.end(); pos++)
133  { delete [] *pos; }
134  S1T.clear();
135  for (pos=B1T.begin(); pos<B1T.end(); pos++)
136  { delete [] *pos; }
137  B1T.clear();
138  for (pos=S2T.begin(); pos<S2T.end(); pos++)
139  { delete [] *pos; }
140  S2T.clear();
141  for (pos=B2T.begin(); pos<B2T.end(); pos++)
142  { delete [] *pos; }
143  B2T.clear();
144  for (pos=S3T.begin(); pos<S3T.end(); pos++)
145  { delete [] *pos; }
146  S3T.clear();
147  for (pos=B3T.begin(); pos<B3T.end(); pos++)
148  { delete [] *pos; }
149  B3T.clear();
150  for (pos=S4T.begin(); pos<S4T.end(); pos++)
151  { delete [] *pos; }
152  S4T.clear();
153  for (pos=B4T.begin(); pos<B4T.end(); pos++)
154  { delete [] *pos; }
155  B4T.clear();
156 }
157 
159  const G4Element*,
160  const G4Material*)
161 {
162  G4ParticleDefinition* particle = Pt->GetDefinition();
163  if (particle == G4KaonMinus::KaonMinus() ) return true;
164  return false;
165 }
166 
167 // The main member function giving the collision cross section (P is in IU, CS is in mb)
168 // Make pMom in independent units ! (Now it is MeV)
170  const G4Isotope*,
171  const G4Element*,
172  const G4Material*)
173 {
174  G4double pMom=Pt->GetTotalMomentum();
175  G4int tgN = A - tgZ;
176 
177  return GetChipsCrossSection(pMom, tgZ, tgN, -321);
178 }
179 
181 {
182  static G4ThreadLocal std::vector <G4int> *colN_G4MT_TLS_ = 0 ; if (!colN_G4MT_TLS_) colN_G4MT_TLS_ = new std::vector <G4int> ; std::vector <G4int> &colN = *colN_G4MT_TLS_; // Vector of N for calculated nuclei (isotops)
183  static G4ThreadLocal std::vector <G4int> *colZ_G4MT_TLS_ = 0 ; if (!colZ_G4MT_TLS_) colZ_G4MT_TLS_ = new std::vector <G4int> ; std::vector <G4int> &colZ = *colZ_G4MT_TLS_; // Vector of Z for calculated nuclei (isotops)
184  static G4ThreadLocal std::vector <G4double> *colP_G4MT_TLS_ = 0 ; if (!colP_G4MT_TLS_) colP_G4MT_TLS_ = new std::vector <G4double> ; std::vector <G4double> &colP = *colP_G4MT_TLS_; // Vector of last momenta for the reaction
185  static G4ThreadLocal std::vector <G4double> *colTH_G4MT_TLS_ = 0 ; if (!colTH_G4MT_TLS_) colTH_G4MT_TLS_ = new std::vector <G4double> ; std::vector <G4double> &colTH = *colTH_G4MT_TLS_; // Vector of energy thresholds for the reaction
186  static G4ThreadLocal std::vector <G4double> *colCS_G4MT_TLS_ = 0 ; if (!colCS_G4MT_TLS_) colCS_G4MT_TLS_ = new std::vector <G4double> ; std::vector <G4double> &colCS = *colCS_G4MT_TLS_; // Vector of last cross sections for the reaction
187  // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---***
188 
189  G4bool fCS = false;
190 
191  G4double pEn=pMom;
192  onlyCS=fCS;
193 
194  G4bool in=false; // By default the isotope must be found in the AMDB
195  lastP = 0.; // New momentum history (nothing to compare with)
196  lastN = tgN; // The last N of the calculated nucleus
197  lastZ = tgZ; // The last Z of the calculated nucleus
198  lastI = colN.size(); // Size of the Associative Memory DB in the heap
199  if(lastI) for(G4int i=0; i<lastI; i++) // Loop over proj/tgZ/tgN lines of DB
200  { // The nucleus with projPDG is found in AMDB
201  if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
202  {
203  lastI=i;
204  lastTH =colTH[i]; // Last THreshold (A-dependent)
205  if(pEn<=lastTH)
206  {
207  return 0.; // Energy is below the Threshold value
208  }
209  lastP =colP [i]; // Last Momentum (A-dependent)
210  lastCS =colCS[i]; // Last CrossSect (A-dependent)
211  // if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
212  if(lastP == pMom) // Do not recalculate
213  {
214  CalculateCrossSection(fCS,-1,i,-321,lastZ,lastN,pMom); // Update param's only
215  return lastCS*millibarn; // Use theLastCS
216  }
217  in = true; // This is the case when the isotop is found in DB
218  // Momentum pMom is in IU ! @@ Units
219  lastCS=CalculateCrossSection(fCS,-1,i,-321,lastZ,lastN,pMom); // read & update
220  if(lastCS<=0. && pEn>lastTH) // Correct the threshold
221  {
222  lastTH=pEn;
223  }
224  break; // Go out of the LOOP with found lastI
225  }
226  } // End of attampt to find the nucleus in DB
227  if(!in) // This nucleus has not been calculated previously
228  {
230  lastCS=CalculateCrossSection(fCS,0,lastI,-321,lastZ,lastN,pMom);//calculate&create
231  if(lastCS<=0.)
232  {
233  lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
234  if(pEn>lastTH)
235  {
236  lastTH=pEn;
237  }
238  }
239  colN.push_back(tgN);
240  colZ.push_back(tgZ);
241  colP.push_back(pMom);
242  colTH.push_back(lastTH);
243  colCS.push_back(lastCS);
244  return lastCS*millibarn;
245  } // End of creation of the new set of parameters
246  else
247  {
248  colP[lastI]=pMom;
249  colCS[lastI]=lastCS;
250  }
251  return lastCS*millibarn;
252 }
253 
254 // Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
255 // F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
256 G4double G4ChipsKaonMinusElasticXS::CalculateCrossSection(G4bool CS, G4int F,
257  G4int I, G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
258 {
259  // *** Begin of Associative Memory DB for acceleration of the cross section calculations
260  static G4ThreadLocal std::vector <G4double> *PIN_G4MT_TLS_ = 0 ; if (!PIN_G4MT_TLS_) PIN_G4MT_TLS_ = new std::vector <G4double> ; std::vector <G4double> &PIN = *PIN_G4MT_TLS_; // Vector of max initialized log(P) in the table
261  // *** End of Static Definitions (Associative Memory Data Base) ***
262  G4double pMom=pIU/GeV; // All calculations are in GeV
263  onlyCS=CS; // Flag to calculate only CS (not Si/Bi)
264  lastLP=std::log(pMom); // Make a logarithm of the momentum for calculation
265  if(F) // This isotope was found in AMDB =>RETRIEVE/UPDATE
266  {
267  if(F<0) // the AMDB must be loded
268  {
269  lastPIN = PIN[I]; // Max log(P) initialised for this table set
270  lastPAR = PAR[I]; // Pointer to the parameter set
271  lastCST = CST[I]; // Pointer to the total sross-section table
272  lastSST = SST[I]; // Pointer to the first squared slope
273  lastS1T = S1T[I]; // Pointer to the first mantissa
274  lastB1T = B1T[I]; // Pointer to the first slope
275  lastS2T = S2T[I]; // Pointer to the second mantissa
276  lastB2T = B2T[I]; // Pointer to the second slope
277  lastS3T = S3T[I]; // Pointer to the third mantissa
278  lastB3T = B3T[I]; // Pointer to the rhird slope
279  lastS4T = S4T[I]; // Pointer to the 4-th mantissa
280  lastB4T = B4T[I]; // Pointer to the 4-th slope
281  }
282  if(lastLP>lastPIN && lastLP<lPMax)
283  {
284  lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
285  PIN[I]=lastPIN; // Remember the new P-Limit of the tables
286  }
287  }
288  else // This isotope wasn't initialized => CREATE
289  {
290  lastPAR = new G4double[nPoints]; // Allocate memory for parameters of CS function
291  lastPAR[nLast]=0; // Initialization for VALGRIND
292  lastCST = new G4double[nPoints]; // Allocate memory for Tabulated CS function
293  lastSST = new G4double[nPoints]; // Allocate memory for Tabulated first sqaredSlope
294  lastS1T = new G4double[nPoints]; // Allocate memory for Tabulated first mantissa
295  lastB1T = new G4double[nPoints]; // Allocate memory for Tabulated first slope
296  lastS2T = new G4double[nPoints]; // Allocate memory for Tabulated second mantissa
297  lastB2T = new G4double[nPoints]; // Allocate memory for Tabulated second slope
298  lastS3T = new G4double[nPoints]; // Allocate memory for Tabulated third mantissa
299  lastB3T = new G4double[nPoints]; // Allocate memory for Tabulated third slope
300  lastS4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th mantissa
301  lastB4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th slope
302  lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
303  PIN.push_back(lastPIN); // Fill parameters of CS function to AMDB
304  PAR.push_back(lastPAR); // Fill parameters of CS function to AMDB
305  CST.push_back(lastCST); // Fill Tabulated CS function to AMDB
306  SST.push_back(lastSST); // Fill Tabulated first sq.slope to AMDB
307  S1T.push_back(lastS1T); // Fill Tabulated first mantissa to AMDB
308  B1T.push_back(lastB1T); // Fill Tabulated first slope to AMDB
309  S2T.push_back(lastS2T); // Fill Tabulated second mantissa to AMDB
310  B2T.push_back(lastB2T); // Fill Tabulated second slope to AMDB
311  S3T.push_back(lastS3T); // Fill Tabulated third mantissa to AMDB
312  B3T.push_back(lastB3T); // Fill Tabulated third slope to AMDB
313  S4T.push_back(lastS4T); // Fill Tabulated 4-th mantissa to AMDB
314  B4T.push_back(lastB4T); // Fill Tabulated 4-th slope to AMDB
315  } // End of creation/update of the new set of parameters and tables
316  // =----------= NOW Update (if necessary) and Calculate the Cross Section =-----------=
317  if(lastLP>lastPIN && lastLP<lPMax)
318  {
319  lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
320  }
321  if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
322  if(lastLP>lPMin && lastLP<=lastPIN) // Linear fit is made using precalculated tables
323  {
324  if(lastLP==lastPIN)
325  {
326  G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
327  G4int blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
328  if(blast<0 || blast>=nLast) G4cout<<"G4QKMElCS::CCS:b="<<blast<<",n="<<nLast<<G4endl;
329  lastSIG = lastCST[blast];
330  if(!onlyCS) // Skip the differential cross-section parameters
331  {
332  theSS = lastSST[blast];
333  theS1 = lastS1T[blast];
334  theB1 = lastB1T[blast];
335  theS2 = lastS2T[blast];
336  theB2 = lastB2T[blast];
337  theS3 = lastS3T[blast];
338  theB3 = lastB3T[blast];
339  theS4 = lastS4T[blast];
340  theB4 = lastB4T[blast];
341  }
342  }
343  else
344  {
345  G4double shift=(lastLP-lPMin)/dlnP; // a shift from the beginning of the table
346  G4int blast=static_cast<int>(shift); // the lower bin number
347  if(blast<0) blast=0;
348  if(blast>=nLast) blast=nLast-1; // low edge of the last bin
349  shift-=blast; // step inside the unit bin
350  G4int lastL=blast+1; // the upper bin number
351  G4double SIGL=lastCST[blast]; // the basic value of the cross-section
352  lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
353  if(!onlyCS) // Skip the differential cross-section parameters
354  {
355  G4double SSTL=lastSST[blast]; // the low bin of the first squared slope
356  theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
357  G4double S1TL=lastS1T[blast]; // the low bin of the first mantissa
358  theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
359  G4double B1TL=lastB1T[blast]; // the low bin of the first slope
360  theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
361  G4double S2TL=lastS2T[blast]; // the low bin of the second mantissa
362  theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
363  G4double B2TL=lastB2T[blast]; // the low bin of the second slope
364  theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
365  G4double S3TL=lastS3T[blast]; // the low bin of the third mantissa
366  theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
367  G4double B3TL=lastB3T[blast]; // the low bin of the third slope
368  theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
369  G4double S4TL=lastS4T[blast]; // the low bin of the 4-th mantissa
370  theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
371  G4double B4TL=lastB4T[blast]; // the low bin of the 4-th slope
372  theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
373  }
374  }
375  }
376  else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
377  if(lastSIG<0.) lastSIG = 0.; // @@ a Warning print can be added
378  return lastSIG;
379 }
380 
381 // It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
382 G4double G4ChipsKaonMinusElasticXS::GetPTables(G4double LP,G4double ILP, G4int PDG,
383  G4int tgZ, G4int tgN)
384 {
385  // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
386  if(PDG == -321)
387  {
388  // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
389  //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
390  //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
391  // par(0) par(7) par(1) par(2) par(4) par(5) par(6)
392  //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
393  // par(8) par(9) par(10) par(11) par(12)par(13) par(14)
394  // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
395  // par(15) par(16) par(17) par(18) par(19) par(20) par(21) par(22) par(23)
396  // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
397  // par(24) par(25) par(26) par(27) par(28) par(29) par(30) par(31)
398  //
399  if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
400  {
401  if ( tgZ == 1 && tgN == 0 )
402  {
403  for (G4int ip=0; ip<n_kmpel; ip++) lastPAR[ip]=kmp_el[ip]; // PiMinus+P
404  }
405  else
406  {
407  G4double a=tgZ+tgN;
408  G4double sa=std::sqrt(a);
409  G4double ssa=std::sqrt(sa);
410  G4double asa=a*sa;
411  G4double a2=a*a;
412  G4double a3=a2*a;
413  G4double a4=a3*a;
414  G4double a5=a4*a;
415  G4double a6=a4*a2;
416  G4double a7=a6*a;
417  G4double a8=a7*a;
418  G4double a9=a8*a;
419  G4double a10=a5*a5;
420  G4double a12=a6*a6;
421  G4double a14=a7*a7;
422  G4double a16=a8*a8;
423  G4double a17=a16*a;
424  //G4double a20=a16*a4;
425  G4double a32=a16*a16;
426  // Reaction cross-section parameters (kmael_fit.f)
427  lastPAR[0]=.06*asa/(1.+a*(.01+.1/ssa)); // p1
428  lastPAR[1]=.75*asa/(1.+.009*a); // p2
429  lastPAR[2]=.1*a2*ssa/(1.+.0015*a2/ssa); // p3
430  lastPAR[3]=1./(1.+500./a2); // p4
431  lastPAR[4]=4.2; // p5
432  lastPAR[5]=0.; // p6 not used
433  lastPAR[6]=0.; // p7 not used
434  lastPAR[7]=0.; // p8 not used
435  lastPAR[8]=0.; // p9 not used
436  // @@ the differential cross-section is parameterized separately for A>6 & A<7
437  if(a<6.5)
438  {
439  G4double a28=a16*a12;
440  // The main pre-exponent (pel_sg)
441  lastPAR[ 9]=4000*a; // p1
442  lastPAR[10]=1.2e7*a8+380*a17; // p2
443  lastPAR[11]=.7/(1.+4.e-12*a16); // p3
444  lastPAR[12]=2.5/a8/(a4+1.e-16*a32); // p4
445  lastPAR[13]=.28*a; // p5
446  lastPAR[14]=1.2*a2+2.3; // p6
447  lastPAR[15]=3.8/a; // p7
448  // The main slope (pel_sl)
449  lastPAR[16]=.01/(1.+.0024*a5); // p1
450  lastPAR[17]=.2*a; // p2
451  lastPAR[18]=9.e-7/(1.+.035*a5); // p3
452  lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a); // p4
453  // The main quadratic (pel_sh)
454  lastPAR[20]=2.25*a3; // p1
455  lastPAR[21]=18.; // p2
456  lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7); // p3
457  lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a); // p4
458  // The 1st max pre-exponent (pel_qq)
459  lastPAR[24]=1.e5/(a8+2.5e12/a16); // p1
460  lastPAR[25]=8.e7/(a12+1.e-27*a28*a28); // p2
461  lastPAR[26]=.0006*a3; // p3
462  // The 1st max slope (pel_qs)
463  lastPAR[27]=10.+4.e-8*a12*a; // p1
464  lastPAR[28]=.114; // p2
465  lastPAR[29]=.003; // p3
466  lastPAR[30]=2.e-23; // p4
467  // The effective pre-exponent (pel_ss)
468  lastPAR[31]=1./(1.+.0001*a8); // p1
469  lastPAR[32]=1.5e-4/(1.+5.e-6*a12); // p2
470  lastPAR[33]=.03; // p3
471  // The effective slope (pel_sb)
472  lastPAR[34]=a/2; // p1
473  lastPAR[35]=2.e-7*a4; // p2
474  lastPAR[36]=4.; // p3
475  lastPAR[37]=64./a3; // p4
476  // The gloria pre-exponent (pel_us)
477  lastPAR[38]=1.e8*std::exp(.32*asa); // p1
478  lastPAR[39]=20.*std::exp(.45*asa); // p2
479  lastPAR[40]=7.e3+2.4e6/a5; // p3
480  lastPAR[41]=2.5e5*std::exp(.085*a3); // p4
481  lastPAR[42]=2.5*a; // p5
482  // The gloria slope (pel_ub)
483  lastPAR[43]=920.+.03*a8*a3; // p1
484  lastPAR[44]=93.+.0023*a12; // p2
485  }
486  else
487  {
488  G4double p1a10=2.2e-28*a10;
489  G4double r4a16=6.e14/a16;
490  G4double s4a16=r4a16*r4a16;
491  // a24
492  // a36
493  // The main pre-exponent (peh_sg)
494  lastPAR[ 9]=4.5*std::pow(a,1.15); // p1
495  lastPAR[10]=.06*std::pow(a,.6); // p2
496  lastPAR[11]=.6*a/(1.+2.e15/a16); // p3
497  lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32); // p4
498  lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5); // p5
499  lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12); // p6
500  // The main slope (peh_sl)
501  lastPAR[15]=400./a12+2.e-22*a9; // p1
502  lastPAR[16]=1.e-32*a12/(1.+5.e22/a14); // p2
503  lastPAR[17]=1000./a2+9.5*sa*ssa; // p3
504  lastPAR[18]=4.e-6*a*asa+1.e11/a16; // p4
505  lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16); // p5
506  lastPAR[20]=9.+100./a; // p6
507  // The main quadratic (peh_sh)
508  lastPAR[21]=.002*a3+3.e7/a6; // p1
509  lastPAR[22]=7.e-15*a4*asa; // p2
510  lastPAR[23]=9000./a4; // p3
511  // The 1st max pre-exponent (peh_qq)
512  lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4); // p1
513  lastPAR[25]=1.e-5*a2+2.e14/a16; // p2
514  lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12); // p3
515  lastPAR[27]=.016*asa/(1.+5.e16/a16); // p4
516  // The 1st max slope (peh_qs)
517  lastPAR[28]=.002*a4/(1.+7.e7/std::pow(a-6.83,14)); // p1
518  lastPAR[29]=2.e6/a6+7.2/std::pow(a,.11); // p2
519  lastPAR[30]=11.*a3/(1.+7.e23/a16/a8); // p3
520  lastPAR[31]=100./asa; // p4
521  // The 2nd max pre-exponent (peh_ss)
522  lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4); // p1
523  lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8); // p2
524  lastPAR[34]=1.3+3.e5/a4; // p3
525  lastPAR[35]=500./(a2+50.)+3; // p4
526  lastPAR[36]=1.e-9/a+s4a16*s4a16; // p5
527  // The 2nd max slope (peh_sb)
528  lastPAR[37]=.4*asa+3.e-9*a6; // p1
529  lastPAR[38]=.0005*a5; // p2
530  lastPAR[39]=.002*a5; // p3
531  lastPAR[40]=10.; // p4
532  // The effective pre-exponent (peh_us)
533  lastPAR[41]=.05+.005*a; // p1
534  lastPAR[42]=7.e-8/sa; // p2
535  lastPAR[43]=.8*sa; // p3
536  lastPAR[44]=.02*sa; // p4
537  lastPAR[45]=1.e8/a3; // p5
538  lastPAR[46]=3.e32/(a32+1.e32); // p6
539  // The effective slope (peh_ub)
540  lastPAR[47]=24.; // p1
541  lastPAR[48]=20./sa; // p2
542  lastPAR[49]=7.e3*a/(sa+1.); // p3
543  lastPAR[50]=900.*sa/(1.+500./a3); // p4
544  }
545  // Parameter for lowEnergyNeutrons
546  lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
547  }
548  lastPAR[nLast]=pwd;
549  // and initialize the zero element of the table
550  G4double lp=lPMin; // ln(momentum)
551  G4bool memCS=onlyCS; // ??
552  onlyCS=false;
553  lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
554  onlyCS=memCS;
555  lastSST[0]=theSS;
556  lastS1T[0]=theS1;
557  lastB1T[0]=theB1;
558  lastS2T[0]=theS2;
559  lastB2T[0]=theB2;
560  lastS3T[0]=theS3;
561  lastB3T[0]=theB3;
562  lastS4T[0]=theS4;
563  lastB4T[0]=theB4;
564  }
565  if(LP>ILP)
566  {
567  G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
568  if(ini<0) ini=0;
569  if(ini<nPoints)
570  {
571  G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
572  if(fin>=nPoints) fin=nLast; // Limit of the tabular initialization
573  if(fin>=ini)
574  {
575  G4double lp=0.;
576  for(G4int ip=ini; ip<=fin; ip++) // Calculate tabular CS,S1,B1,S2,B2,S3,B3
577  {
578  lp=lPMin+ip*dlnP; // ln(momentum)
579  G4bool memCS=onlyCS;
580  onlyCS=false;
581  lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
582  onlyCS=memCS;
583  lastSST[ip]=theSS;
584  lastS1T[ip]=theS1;
585  lastB1T[ip]=theB1;
586  lastS2T[ip]=theS2;
587  lastB2T[ip]=theB2;
588  lastS3T[ip]=theS3;
589  lastB3T[ip]=theB3;
590  lastS4T[ip]=theS4;
591  lastB4T[ip]=theB4;
592  }
593  return lp;
594  }
595  else G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetPTables: PDG="<<PDG
596  <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP
597  <<" > ILP="<<ILP<<" nothing is done!"<<G4endl;
598  }
599  else G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetPTables: PDG="<<PDG
600  <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
601  <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
602  }
603  }
604  else
605  {
606  // G4cout<<"*Error*G4ChipsKaonMinusElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ
607  // <<", N="<<tgN<<", while it is defined only for PDG=-321"<<G4endl;
608  // throw G4QException("G4ChipsKaonMinusElasticXS::GetPTables:onlyK-'s implemented");
610  ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
611  << ", while it is defined only for PDG=-321 (K-) " << G4endl;
612  G4Exception("G4ChipsKaonMinusElasticXS::GetPTables()", "HAD_CHPS_0000",
613  FatalException, ed);
614  }
615  return ILP;
616 }
617 
618 // Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
620 {
621  if(PDG==310 || PDG==130) PDG=-321;
622  if(PDG!=-321)G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetET:PDG="<<PDG<<G4endl;
623  if(onlyCS) G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetExT: onlyCS=1"<<G4endl;
624  if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
625  G4double q2=0.;
626  if(tgZ==1 && tgN==0) // ===> p+p=p+p
627  {
628  G4double E1=lastTM*theB1;
629  G4double R1=(1.-std::exp(-E1));
630  G4double E2=lastTM*theB2;
631  G4double R2=(1.-std::exp(-E2*E2*E2));
632  G4double E3=lastTM*theB3;
633  G4double R3=(1.-std::exp(-E3));
634  G4double I1=R1*theS1/theB1;
635  G4double I2=R2*theS2;
636  G4double I3=R3*theS3;
637  G4double I12=I1+I2;
638  G4double rand=(I12+I3)*G4UniformRand();
639  if (rand<I1 )
640  {
641  G4double ran=R1*G4UniformRand();
642  if(ran>1.) ran=1.;
643  q2=-std::log(1.-ran)/theB1;
644  }
645  else if(rand<I12)
646  {
647  G4double ran=R2*G4UniformRand();
648  if(ran>1.) ran=1.;
649  q2=-std::log(1.-ran);
650  if(q2<0.) q2=0.;
651  q2=std::pow(q2,third)/theB2;
652  }
653  else
654  {
655  G4double ran=R3*G4UniformRand();
656  if(ran>1.) ran=1.;
657  q2=-std::log(1.-ran)/theB3;
658  }
659  }
660  else
661  {
662  G4double a=tgZ+tgN;
663  G4double E1=lastTM*(theB1+lastTM*theSS);
664  G4double R1=(1.-std::exp(-E1));
665  G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
666  G4double tm2=lastTM*lastTM;
667  G4double E2=lastTM*tm2*theB2; // power 3 for lowA, 5 for HighA (1st)
668  if(a>6.5)E2*=tm2; // for heavy nuclei
669  G4double R2=(1.-std::exp(-E2));
670  G4double E3=lastTM*theB3;
671  if(a>6.5)E3*=tm2*tm2*tm2; // power 1 for lowA, 7 (2nd) for HighA
672  G4double R3=(1.-std::exp(-E3));
673  G4double E4=lastTM*theB4;
674  G4double R4=(1.-std::exp(-E4));
675  G4double I1=R1*theS1;
676  G4double I2=R2*theS2;
677  G4double I3=R3*theS3;
678  G4double I4=R4*theS4;
679  G4double I12=I1+I2;
680  G4double I13=I12+I3;
681  G4double rand=(I13+I4)*G4UniformRand();
682  if(rand<I1)
683  {
684  G4double ran=R1*G4UniformRand();
685  if(ran>1.) ran=1.;
686  q2=-std::log(1.-ran)/theB1;
687  if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
688  }
689  else if(rand<I12)
690  {
691  G4double ran=R2*G4UniformRand();
692  if(ran>1.) ran=1.;
693  q2=-std::log(1.-ran)/theB2;
694  if(q2<0.) q2=0.;
695  if(a<6.5) q2=std::pow(q2,third);
696  else q2=std::pow(q2,fifth);
697  }
698  else if(rand<I13)
699  {
700  G4double ran=R3*G4UniformRand();
701  if(ran>1.) ran=1.;
702  q2=-std::log(1.-ran)/theB3;
703  if(q2<0.) q2=0.;
704  if(a>6.5) q2=std::pow(q2,sevth);
705  }
706  else
707  {
708  G4double ran=R4*G4UniformRand();
709  if(ran>1.) ran=1.;
710  q2=-std::log(1.-ran)/theB4;
711  if(a<6.5) q2=lastTM-q2; // u reduced for lightA (starts from 0)
712  }
713  }
714  if(q2<0.) q2=0.;
715  if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QKaonMinusElasticCS::GetExchT: -t="<<q2<<G4endl;
716  if(q2>lastTM)
717  {
718  q2=lastTM;
719  }
720  return q2*GeVSQ;
721 }
722 
723 // Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
724 G4double G4ChipsKaonMinusElasticXS::GetSlope(G4int tgZ, G4int tgN, G4int PDG)
725 {
726  if(onlyCS)G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetSl:onlCS=true"<<G4endl;
727  if(lastLP<-4.3) return 0.; // S-wave for p<14 MeV/c (kinE<.1MeV)
728  if(PDG != -321)
729  {
730  // G4cout<<"*Error*G4ChipsKaonMinusElasticXS::GetSlope: PDG="<<PDG<<", Z="<<tgZ
731  // <<", N="<<tgN<<", while it is defined only for PDG=-321"<<G4endl;
732  // throw G4QException("G4ChipsKaonMinusElasticXS::GetSlope:Only K- is implemented");
734  ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
735  << ", while it is defined only for PDG=-321 (K-)" << G4endl;
736  }
737  if(theB1<0.) theB1=0.;
738  if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QKaonMinusElCS::GetSlope:B1="<<theB1<<G4endl;
739  return theB1/GeVSQ;
740 }
741 
742 // Returns half max(Q2=-t) in independent units (MeV^2)
743 G4double G4ChipsKaonMinusElasticXS::GetHMaxT()
744 {
745  return lastTM*HGeVSQ;
746 }
747 
748 // lastLP is used, so calculating tables, one need to remember and then recover lastLP
749 G4double G4ChipsKaonMinusElasticXS::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
750  G4int tgN)
751 {
752  if(PDG!=-321)G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetTV:PDG="<<PDG<<G4endl;
753  if(tgZ<0 || tgZ>92)
754  {
755  G4cout<<"*Warning*G4QKaonMinusElasticCS::GetTabV:(1-92)NoIsotopes for Z="<<tgZ<<G4endl;
756  return 0.;
757  }
758  G4int iZ=tgZ-1; // Z index
759  if(iZ<0)
760  {
761  iZ=0; // conversion of the neutron target to the proton target
762  tgZ=1;
763  tgN=0;
764  }
765  G4double p=std::exp(lp); // momentum
766  G4double sp=std::sqrt(p); // sqrt(p)
767  G4double psp=p*sp; // p*sqrt(p)
768  G4double p2=p*p;
769  G4double p3=p2*p;
770  G4double p4=p3*p;
771  if ( tgZ == 1 && tgN == 0 ) // KaonMinus+P
772  {
773  G4double dl2=lp-lastPAR[12];
774  theSS=lastPAR[35];
775  theS1=(lastPAR[13]+lastPAR[14]*dl2*dl2)/(1.+lastPAR[15]/p4/p)+
776  (lastPAR[16]/p2+lastPAR[17]*p)/(p4+lastPAR[18]*sp);
777  theB1=lastPAR[19]*std::pow(p,lastPAR[20])/(1.+lastPAR[21]/p3);
778  theS2=lastPAR[22]+lastPAR[23]/(p4+lastPAR[24]*p);
779  theB2=lastPAR[25]+lastPAR[26]/(p4+lastPAR[27]/sp);
780  theS3=lastPAR[28]+lastPAR[29]/(p4*p4+lastPAR[30]*p2+lastPAR[31]);
781  theB3=lastPAR[32]+lastPAR[33]/(p4+lastPAR[34]);
782  theS4=0.;
783  theB4=0.;
784  // Returns the total elastic pim-p cross-section (to avoid spoiling lastSIG)
785  G4double dp=lp-lastPAR[2];
786  return lastPAR[0]/psp+(lastPAR[1]*dp*dp+lastPAR[3])/(1.-lastPAR[4]/sp+lastPAR[5]/p4)+
787  lastPAR[6]/(sqr(p-lastPAR[7])+lastPAR[8])+lastPAR[9]/(sqr(p-lastPAR[10])+lastPAR[11]);
788  }
789  else
790  {
791  G4double p5=p4*p;
792  G4double p6=p5*p;
793  G4double p8=p6*p2;
794  G4double p10=p8*p2;
795  G4double p12=p10*p2;
796  G4double p16=p8*p8;
797  //G4double p24=p16*p8;
798  G4double dl=lp-5.;
799  G4double a=tgZ+tgN;
800  G4double pah=std::pow(p,a/2);
801  G4double pa=pah*pah;
802  G4double pa2=pa*pa;
803  if(a<6.5)
804  {
805  theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
806  (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
807  theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
808  theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
809  theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
810  theB2=lastPAR[27]*std::pow(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
811  theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
812  theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
813  theS4=p2*(pah*lastPAR[38]*std::exp(-pah*lastPAR[39])+
814  lastPAR[40]/(1.+lastPAR[41]*std::pow(p,lastPAR[42])));
815  theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
816  }
817  else
818  {
819  theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
820  lastPAR[13]/(p5+lastPAR[14]/p16);
821  theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/std::pow(p,lastPAR[20]))+
822  lastPAR[17]/(1.+lastPAR[18]/p4);
823  theSS=lastPAR[21]/(p4/std::pow(p,lastPAR[23])+lastPAR[22]/p4);
824  theS2=lastPAR[24]/p4/(std::pow(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
825  theB2=lastPAR[28]/std::pow(p,lastPAR[29])+lastPAR[30]/std::pow(p,lastPAR[31]);
826  theS3=lastPAR[32]/std::pow(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
827  lastPAR[33]/(1.+lastPAR[34]/p6);
828  theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
829  theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
830  (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
831  theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
832  }
833  // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
834  G4double dlp=lp-lastPAR[4]; // ax
835  // p1 p2 p3 p4
836  return (lastPAR[0]*dlp*dlp+lastPAR[1]+lastPAR[2]/p3)/(1.+lastPAR[3]/p2/sp);
837  }
838  return 0.;
839 } // End of GetTableValues
840 
841 // Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
842 G4double G4ChipsKaonMinusElasticXS::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
843  G4double pP)
844 {
845  G4double pP2=pP*pP; // squared momentum of the projectile
846  if(tgZ || tgN>-1) // ---> pipA
847  {
848  G4double mt=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIon(tgZ,tgZ+tgN,0)->GetPDGMass()*.001; // Target mass in GeV
849 
850  G4double dmt=mt+mt;
851  G4double mds=dmt*std::sqrt(pP2+mK2)+mK2+mt*mt; // Mondelstam mds
852  return dmt*dmt*pP2/mds;
853  }
854  else
855  {
857  ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
858  << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
859  G4Exception("G4ChipsKaonMinusElasticXS::GetQ2max()", "HAD_CHPS_0000",
860  FatalException, ed);
861  return 0;
862  }
863 }
int gigaelectronvolt
Definition: hepunit.py:110
fin
Definition: AddMC.C:2
tuple a
Definition: test.py:11
std::ostringstream G4ExceptionDescription
Definition: globals.hh:76
ifstream in
Definition: comparison.C:7
const char * p
Definition: xmltok.h:285
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
Definition: G4IonTable.cc:449
G4ParticleDefinition * GetDefinition() const
#define G4ThreadLocal
Definition: tls.hh:52
int G4int
Definition: G4Types.hh:78
int millibarn
Definition: hepunit.py:40
#define G4MUTEX_INITIALIZER
Definition: G4Threading.hh:158
static G4KaonMinus * KaonMinus()
Definition: G4KaonMinus.cc:113
G4double GetTotalMomentum() const
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
G4IonTable * GetIonTable() const
#define G4UniformRand()
Definition: Randomize.hh:87
G4GLOB_DLL std::ostream G4cout
bool G4bool
Definition: G4Types.hh:79
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
G4int G4Mutex
Definition: G4Threading.hh:156
#define G4_DECLARE_XS_FACTORY(cross_section)
G4double GetPDGMass() const
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
static G4ParticleTable * GetParticleTable()
#define G4endl
Definition: G4ios.hh:61
T sqr(const T &x)
Definition: templates.hh:145
double G4double
Definition: G4Types.hh:76
G4double GetExchangeT(G4int tZ, G4int tN, G4int pPDG)