Geant4_10
G4ChipsHyperonElasticXS.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: G4ChipsHyperonElasticXS.cc 70680 2013-06-04 07:51:03Z gcosmo $
28 //
29 //
30 // G4 Physics class: G4ChipsHyperonElasticXS for pA elastic cross sections
31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 5-Feb-2010
32 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 5-Feb-2010
33 //
34 // -------------------------------------------------------------------------------
35 // Short description: Interaction cross-sections for the elastic process.
36 // Class extracted from CHIPS and integrated in Geant4 by W.Pokorski
37 // -------------------------------------------------------------------------------
38 //
39 
41 #include "G4SystemOfUnits.hh"
42 #include "G4DynamicParticle.hh"
43 #include "G4ParticleDefinition.hh"
44 #include "G4Lambda.hh"
45 #include "G4SigmaPlus.hh"
46 #include "G4SigmaMinus.hh"
47 #include "G4SigmaZero.hh"
48 #include "G4XiMinus.hh"
49 #include "G4XiZero.hh"
50 #include "G4OmegaMinus.hh"
51 #include "G4Nucleus.hh"
52 #include "G4ParticleTable.hh"
53 #include "G4NucleiProperties.hh"
54 #include "G4IonTable.hh"
55 
56 // factory
57 #include "G4CrossSectionFactory.hh"
58 //
60 
61 G4ChipsHyperonElasticXS::G4ChipsHyperonElasticXS():G4VCrossSectionDataSet(Default_Name()), nPoints(128), nLast(nPoints-1)
62 {
63  lPMin=-8.; //Min tabulatedLogarithmMomentum(D)
64  lPMax= 8.; //Max tabulatedLogarithmMomentum(D)
65  dlnP=(lPMax-lPMin)/nLast;// LogStep inTable (D)
66  onlyCS=true;//Flag toCalculOnlyCS(not Si/Bi)(L)
67  lastSIG=0.; //Last calculated cross section (L)
68  lastLP=-10.;//LastLog(mom_of IncidentHadron)(L)
69  lastTM=0.; //Last t_maximum (L)
70  theSS=0.; //TheLastSqSlope of 1st difr.Max(L)
71  theS1=0.; //TheLastMantissa of 1st difrMax(L)
72  theB1=0.; //TheLastSlope of 1st difructMax(L)
73  theS2=0.; //TheLastMantissa of 2nd difrMax(L)
74  theB2=0.; //TheLastSlope of 2nd difructMax(L)
75  theS3=0.; //TheLastMantissa of 3d difr.Max(L)
76  theB3=0.; //TheLastSlope of 3d difruct.Max(L)
77  theS4=0.; //TheLastMantissa of 4th difrMax(L)
78  theB4=0.; //TheLastSlope of 4th difructMax(L)
79  lastTZ=0; // Last atomic number of the target
80  lastTN=0; // Last # of neutrons in the target
81  lastPIN=0.; // Last initialized max momentum
82  lastCST=0; // Elastic cross-section table
83  lastPAR=0; // ParametersForFunctionCalculation
84  lastSST=0; // E-dep ofSqardSlope of 1st difMax
85  lastS1T=0; // E-dep of mantissa of 1st dif.Max
86  lastB1T=0; // E-dep of the slope of 1st difMax
87  lastS2T=0; // E-dep of mantissa of 2nd difrMax
88  lastB2T=0; // E-dep of the slope of 2nd difMax
89  lastS3T=0; // E-dep of mantissa of 3d difr.Max
90  lastB3T=0; // E-dep of the slope of 3d difrMax
91  lastS4T=0; // E-dep of mantissa of 4th difrMax
92  lastB4T=0; // E-dep of the slope of 4th difMax
93  lastN=0; // The last N of calculated nucleus
94  lastZ=0; // The last Z of calculated nucleus
95  lastP=0.; // LastUsed inCrossSection Momentum
96  lastTH=0.; // Last threshold momentum
97  lastCS=0.; // Last value of the Cross Section
98  lastI=0; // The last position in the DAMDB
99 }
100 
102 {
103  std::vector<G4double*>::iterator pos;
104  for (pos=CST.begin(); pos<CST.end(); pos++)
105  { delete [] *pos; }
106  CST.clear();
107  for (pos=PAR.begin(); pos<PAR.end(); pos++)
108  { delete [] *pos; }
109  PAR.clear();
110  for (pos=SST.begin(); pos<SST.end(); pos++)
111  { delete [] *pos; }
112  SST.clear();
113  for (pos=S1T.begin(); pos<S1T.end(); pos++)
114  { delete [] *pos; }
115  S1T.clear();
116  for (pos=B1T.begin(); pos<B1T.end(); pos++)
117  { delete [] *pos; }
118  B1T.clear();
119  for (pos=S2T.begin(); pos<S2T.end(); pos++)
120  { delete [] *pos; }
121  S2T.clear();
122  for (pos=B2T.begin(); pos<B2T.end(); pos++)
123  { delete [] *pos; }
124  B2T.clear();
125  for (pos=S3T.begin(); pos<S3T.end(); pos++)
126  { delete [] *pos; }
127  S3T.clear();
128  for (pos=B3T.begin(); pos<B3T.end(); pos++)
129  { delete [] *pos; }
130  B3T.clear();
131  for (pos=S4T.begin(); pos<S4T.end(); pos++)
132  { delete [] *pos; }
133  S4T.clear();
134  for (pos=B4T.begin(); pos<B4T.end(); pos++)
135  { delete [] *pos; }
136  B4T.clear();
137 }
138 
140  const G4Element*,
141  const G4Material*)
142 {
143  G4ParticleDefinition* particle = Pt->GetDefinition();
144  if (particle == G4Lambda::Lambda())
145  {
146  return true;
147  }
148  else if(particle == G4SigmaPlus::SigmaPlus())
149  {
150  return true;
151  }
152  else if(particle == G4SigmaMinus::SigmaMinus())
153  {
154  return true;
155  }
156  else if(particle == G4SigmaZero::SigmaZero())
157  {
158  return true;
159  }
160  else if(particle == G4XiMinus::XiMinus())
161  {
162  return true;
163  }
164  else if(particle == G4XiZero::XiZero())
165  {
166  return true;
167  }
168  else if(particle == G4OmegaMinus::OmegaMinus())
169  {
170  return true;
171  }
172  return false;
173 }
174 
175 // The main member function giving the collision cross section (P is in IU, CS is in mb)
176 // Make pMom in independent units ! (Now it is MeV)
178  const G4Isotope*,
179  const G4Element*,
180  const G4Material*)
181 {
182  G4double pMom=Pt->GetTotalMomentum();
183  G4int tgN = A - tgZ;
184  G4int pdg = Pt->GetDefinition()->GetPDGEncoding();
185 
186  return GetChipsCrossSection(pMom, tgZ, tgN, pdg);
187 }
188 
190 {
191  static G4ThreadLocal std::vector <G4int> *colN_G4MT_TLS_ = 0 ; if (!colN_G4MT_TLS_) colN_G4MT_TLS_ = new std::vector <G4int> ; std::vector <G4int> &colN = *colN_G4MT_TLS_; // Vector of N for calculated nuclei (isotops)
192  static G4ThreadLocal std::vector <G4int> *colZ_G4MT_TLS_ = 0 ; if (!colZ_G4MT_TLS_) colZ_G4MT_TLS_ = new std::vector <G4int> ; std::vector <G4int> &colZ = *colZ_G4MT_TLS_; // Vector of Z for calculated nuclei (isotops)
193  static G4ThreadLocal std::vector <G4double> *colP_G4MT_TLS_ = 0 ; if (!colP_G4MT_TLS_) colP_G4MT_TLS_ = new std::vector <G4double> ; std::vector <G4double> &colP = *colP_G4MT_TLS_; // Vector of last momenta for the reaction
194  static G4ThreadLocal std::vector <G4double> *colTH_G4MT_TLS_ = 0 ; if (!colTH_G4MT_TLS_) colTH_G4MT_TLS_ = new std::vector <G4double> ; std::vector <G4double> &colTH = *colTH_G4MT_TLS_; // Vector of energy thresholds for the reaction
195  static G4ThreadLocal std::vector <G4double> *colCS_G4MT_TLS_ = 0 ; if (!colCS_G4MT_TLS_) colCS_G4MT_TLS_ = new std::vector <G4double> ; std::vector <G4double> &colCS = *colCS_G4MT_TLS_; // Vector of last cross sections for the reaction
196  // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---***
197 
198  G4bool fCS = false;
199  G4double pEn=pMom;
200 
201  onlyCS=fCS;
202 
203  G4bool in=false; // By default the isotope must be found in the AMDB
204  lastP = 0.; // New momentum history (nothing to compare with)
205  lastN = tgN; // The last N of the calculated nucleus
206  lastZ = tgZ; // The last Z of the calculated nucleus
207  lastI = colN.size(); // Size of the Associative Memory DB in the heap
208  if(lastI) for(G4int i=0; i<lastI; i++) // Loop over proj/tgZ/tgN lines of DB
209  { // The nucleus with projPDG is found in AMDB
210  if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
211  {
212  lastI=i;
213  lastTH =colTH[i]; // Last THreshold (A-dependent)
214  if(pEn<=lastTH)
215  {
216  return 0.; // Energy is below the Threshold value
217  }
218  lastP =colP [i]; // Last Momentum (A-dependent)
219  lastCS =colCS[i]; // Last CrossSect (A-dependent)
220  // if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
221  if(lastP == pMom) // Do not recalculate
222  {
223  CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // Update param's only
224  return lastCS*millibarn; // Use theLastCS
225  }
226  in = true; // This is the case when the isotop is found in DB
227  // Momentum pMom is in IU ! @@ Units
228  lastCS=CalculateCrossSection(fCS,-1,i,pPDG,lastZ,lastN,pMom); // read & update
229  if(lastCS<=0. && pEn>lastTH) // Correct the threshold
230  {
231  lastTH=pEn;
232  }
233  break; // Go out of the LOOP with found lastI
234  }
235  } // End of attampt to find the nucleus in DB
236  if(!in) // This nucleus has not been calculated previously
237  {
239  lastCS=CalculateCrossSection(fCS,0,lastI,pPDG,lastZ,lastN,pMom);//calculate&create
240  if(lastCS<=0.)
241  {
242  lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
243  if(pEn>lastTH)
244  {
245  lastTH=pEn;
246  }
247  }
248  colN.push_back(tgN);
249  colZ.push_back(tgZ);
250  colP.push_back(pMom);
251  colTH.push_back(lastTH);
252  colCS.push_back(lastCS);
253  return lastCS*millibarn;
254  } // End of creation of the new set of parameters
255  else
256  {
257  colP[lastI]=pMom;
258  colCS[lastI]=lastCS;
259  }
260  return lastCS*millibarn;
261 }
262 
263 // Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
264 // F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
265 G4double G4ChipsHyperonElasticXS::CalculateCrossSection(G4bool CS,G4int F,G4int I,
266  G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
267 {
268  // *** Begin of Associative Memory DB for acceleration of the cross section calculations
269  static G4ThreadLocal std::vector <G4double> *PIN_G4MT_TLS_ = 0 ; if (!PIN_G4MT_TLS_) PIN_G4MT_TLS_ = new std::vector <G4double> ; std::vector <G4double> &PIN = *PIN_G4MT_TLS_; // Vector of max initialized log(P) in the table
270  // *** End of Static Definitions (Associative Memory Data Base) ***
271  G4double pMom=pIU/GeV; // All calculations are in GeV
272  onlyCS=CS; // Flag to calculate only CS (not Si/Bi)
273  lastLP=std::log(pMom); // Make a logarithm of the momentum for calculation
274  if(F) // This isotope was found in AMDB =>RETRIEVE/UPDATE
275  {
276  if(F<0) // the AMDB must be loded
277  {
278  lastPIN = PIN[I]; // Max log(P) initialised for this table set
279  lastPAR = PAR[I]; // Pointer to the parameter set
280 
281  lastCST = CST[I]; // Pointer to the total sross-section table
282  lastSST = SST[I]; // Pointer to the first squared slope
283  lastS1T = S1T[I]; // Pointer to the first mantissa
284  lastB1T = B1T[I]; // Pointer to the first slope
285  lastS2T = S2T[I]; // Pointer to the second mantissa
286  lastB2T = B2T[I]; // Pointer to the second slope
287  lastS3T = S3T[I]; // Pointer to the third mantissa
288  lastB3T = B3T[I]; // Pointer to the rhird slope
289  lastS4T = S4T[I]; // Pointer to the 4-th mantissa
290  lastB4T = B4T[I]; // Pointer to the 4-th slope
291  }
292  if(lastLP>lastPIN && lastLP<lPMax)
293  {
294  lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
295  PIN[I]=lastPIN; // Remember the new P-Limit of the tables
296  }
297  }
298  else // This isotope wasn't initialized => CREATE
299  {
300  lastPAR = new G4double[nPoints]; // Allocate memory for parameters of CS function
301  lastPAR[nLast]=0; // Initialization for VALGRIND
302  lastCST = new G4double[nPoints]; // Allocate memory for Tabulated CS function
303  lastSST = new G4double[nPoints]; // Allocate memory for Tabulated first sqaredSlope
304  lastS1T = new G4double[nPoints]; // Allocate memory for Tabulated first mantissa
305  lastB1T = new G4double[nPoints]; // Allocate memory for Tabulated first slope
306  lastS2T = new G4double[nPoints]; // Allocate memory for Tabulated second mantissa
307  lastB2T = new G4double[nPoints]; // Allocate memory for Tabulated second slope
308  lastS3T = new G4double[nPoints]; // Allocate memory for Tabulated third mantissa
309  lastB3T = new G4double[nPoints]; // Allocate memory for Tabulated third slope
310  lastS4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th mantissa
311  lastB4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th slope
312  lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
313  PIN.push_back(lastPIN); // Fill parameters of CS function to AMDB
314  PAR.push_back(lastPAR); // Fill parameters of CS function to AMDB
315  CST.push_back(lastCST); // Fill Tabulated CS function to AMDB
316  SST.push_back(lastSST); // Fill Tabulated first sq.slope to AMDB
317  S1T.push_back(lastS1T); // Fill Tabulated first mantissa to AMDB
318  B1T.push_back(lastB1T); // Fill Tabulated first slope to AMDB
319  S2T.push_back(lastS2T); // Fill Tabulated second mantissa to AMDB
320  B2T.push_back(lastB2T); // Fill Tabulated second slope to AMDB
321  S3T.push_back(lastS3T); // Fill Tabulated third mantissa to AMDB
322  B3T.push_back(lastB3T); // Fill Tabulated third slope to AMDB
323  S4T.push_back(lastS4T); // Fill Tabulated 4-th mantissa to AMDB
324  B4T.push_back(lastB4T); // Fill Tabulated 4-th slope to AMDB
325  } // End of creation/update of the new set of parameters and tables
326  // =-----------= NOW Update (if necessary) and Calculate the Cross Section =-----------=
327  if(lastLP>lastPIN && lastLP<lPMax)
328  {
329  lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
330  }
331  if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
332  if(lastLP>lPMin && lastLP<=lastPIN) // Linear fit is made using precalculated tables
333  {
334  if(lastLP==lastPIN)
335  {
336  G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
337  G4int blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
338  if(blast<0 || blast>=nLast)G4cout<<"G4QHyperElCS::CCS:b="<<blast<<","<<nLast<<G4endl;
339  lastSIG = lastCST[blast];
340  if(!onlyCS) // Skip the differential cross-section parameters
341  {
342  theSS = lastSST[blast];
343  theS1 = lastS1T[blast];
344  theB1 = lastB1T[blast];
345  theS2 = lastS2T[blast];
346  theB2 = lastB2T[blast];
347  theS3 = lastS3T[blast];
348  theB3 = lastB3T[blast];
349  theS4 = lastS4T[blast];
350  theB4 = lastB4T[blast];
351  }
352  }
353  else
354  {
355  G4double shift=(lastLP-lPMin)/dlnP; // a shift from the beginning of the table
356  G4int blast=static_cast<int>(shift); // the lower bin number
357  if(blast<0) blast=0;
358  if(blast>=nLast) blast=nLast-1; // low edge of the last bin
359  shift-=blast; // step inside the unit bin
360  G4int lastL=blast+1; // the upper bin number
361  G4double SIGL=lastCST[blast]; // the basic value of the cross-section
362  lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
363  if(!onlyCS) // Skip the differential cross-section parameters
364  {
365  G4double SSTL=lastSST[blast]; // the low bin of the first squared slope
366  theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
367  G4double S1TL=lastS1T[blast]; // the low bin of the first mantissa
368  theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
369  G4double B1TL=lastB1T[blast]; // the low bin of the first slope
370  theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
371  G4double S2TL=lastS2T[blast]; // the low bin of the second mantissa
372  theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
373  G4double B2TL=lastB2T[blast]; // the low bin of the second slope
374  theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
375  G4double S3TL=lastS3T[blast]; // the low bin of the third mantissa
376  theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
377  G4double B3TL=lastB3T[blast]; // the low bin of the third slope
378  theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
379  G4double S4TL=lastS4T[blast]; // the low bin of the 4-th mantissa
380  theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
381  G4double B4TL=lastB4T[blast]; // the low bin of the 4-th slope
382  theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
383  }
384  }
385  }
386  else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
387  if(lastSIG<0.) lastSIG = 0.; // @@ a Warning print can be added
388  return lastSIG;
389 }
390 
391 // It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
392 G4double G4ChipsHyperonElasticXS::GetPTables(G4double LP, G4double ILP, G4int PDG,
393  G4int tgZ, G4int tgN)
394 {
395  // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
396  static const G4double pwd=2727;
397  const G4int n_hypel=33; // #of parameters for pp-elastic (<nPoints=128)
398  // -0- -1- -2- -3- -4- -5- -6--7--8--9--10--11--12-13--14-
399  G4double hyp_el[n_hypel]={1.,.002,.12,.0557,3.5,6.72,99.,2.,3.,5.,74.,3.,3.4,.2,.17,
400  .001,8.,.055,3.64,5.e-5,4000.,1500.,.46,1.2e6,3.5e6,5.e-5,
401  1.e10,8.5e8,1.e10,1.1,3.4e6,6.8e6,0.};
402  // -15--16- -17- -18- -19- -20- -21- -22- -23- -24- -25-
403  // -26- -27- -28- -29- -30- -31- -32-
404  if(PDG!=3222 && PDG>3000 && PDG<3335)
405  {
406  // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
407  //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
408  //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
409  // par(0) par(7) par(1) par(2) par(4) par(5) par(6)
410  //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
411  // par(8) par(9) par(10) par(11) par(12)par(13) par(14)
412  // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
413  // par(15) par(16) par(17) par(18) par(19) par(20) par(21) par(22) par(23)
414  // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
415  // par(24) par(25) par(26) par(27) par(28) par(29) par(30) par(31)
416  //
417  if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
418  {
419  if ( tgZ == 1 && tgN == 0 )
420  {
421  for (G4int ip=0; ip<n_hypel; ip++) lastPAR[ip]=hyp_el[ip]; // Hyperon+P
422  }
423  else
424  {
425  G4double a=tgZ+tgN;
426  G4double sa=std::sqrt(a);
427  G4double ssa=std::sqrt(sa);
428  G4double asa=a*sa;
429  G4double a2=a*a;
430  G4double a3=a2*a;
431  G4double a4=a3*a;
432  G4double a5=a4*a;
433  G4double a6=a4*a2;
434  G4double a7=a6*a;
435  G4double a8=a7*a;
436  G4double a9=a8*a;
437  G4double a10=a5*a5;
438  G4double a12=a6*a6;
439  G4double a14=a7*a7;
440  G4double a16=a8*a8;
441  G4double a17=a16*a;
442  //G4double a20=a16*a4;
443  G4double a32=a16*a16;
444  // Reaction cross-section parameters (pel=peh_fit.f)
445  lastPAR[0]=4./(1.+22/asa); // p1
446  lastPAR[1]=2.36*asa/(1.+a*.055/ssa); // p2
447  lastPAR[2]=(1.+.00007*a3/ssa)/(1.+.0026*a2); // p3
448  lastPAR[3]=1.76*a/ssa+.00003*a3; // p4
449  lastPAR[4]=(.03+200./a3)/(1.+1.E5/a3/sa); // p5
450  lastPAR[5]=5.; // p6
451  lastPAR[6]=0.; // p7 not used
452  lastPAR[7]=0.; // p8 not used
453  lastPAR[8]=0.; // p9 not used
454  // @@ the differential cross-section is parameterized separately for A>6 & A<7
455  if(a<6.5)
456  {
457  G4double a28=a16*a12;
458  // The main pre-exponent (pel_sg)
459  lastPAR[ 9]=4000*a; // p1
460  lastPAR[10]=1.2e7*a8+380*a17; // p2
461  lastPAR[11]=.7/(1.+4.e-12*a16); // p3
462  lastPAR[12]=2.5/a8/(a4+1.e-16*a32); // p4
463  lastPAR[13]=.28*a; // p5
464  lastPAR[14]=1.2*a2+2.3; // p6
465  lastPAR[15]=3.8/a; // p7
466  // The main slope (pel_sl)
467  lastPAR[16]=.01/(1.+.0024*a5); // p1
468  lastPAR[17]=.2*a; // p2
469  lastPAR[18]=9.e-7/(1.+.035*a5); // p3
470  lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a); // p4
471  // The main quadratic (pel_sh)
472  lastPAR[20]=2.25*a3; // p1
473  lastPAR[21]=18.; // p2
474  lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7); // p3
475  lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a); // p4
476  // The 1st max pre-exponent (pel_qq)
477  lastPAR[24]=1.e5/(a8+2.5e12/a16); // p1
478  lastPAR[25]=8.e7/(a12+1.e-27*a28*a28); // p2
479  lastPAR[26]=.0006*a3; // p3
480  // The 1st max slope (pel_qs)
481  lastPAR[27]=10.+4.e-8*a12*a; // p1
482  lastPAR[28]=.114; // p2
483  lastPAR[29]=.003; // p3
484  lastPAR[30]=2.e-23; // p4
485  // The effective pre-exponent (pel_ss)
486  lastPAR[31]=1./(1.+.0001*a8); // p1
487  lastPAR[32]=1.5e-4/(1.+5.e-6*a12); // p2
488  lastPAR[33]=.03; // p3
489  // The effective slope (pel_sb)
490  lastPAR[34]=a/2; // p1
491  lastPAR[35]=2.e-7*a4; // p2
492  lastPAR[36]=4.; // p3
493  lastPAR[37]=64./a3; // p4
494  // The gloria pre-exponent (pel_us)
495  lastPAR[38]=1.e8*std::exp(.32*asa); // p1
496  lastPAR[39]=20.*std::exp(.45*asa); // p2
497  lastPAR[40]=7.e3+2.4e6/a5; // p3
498  lastPAR[41]=2.5e5*std::exp(.085*a3); // p4
499  lastPAR[42]=2.5*a; // p5
500  // The gloria slope (pel_ub)
501  lastPAR[43]=920.+.03*a8*a3; // p1
502  lastPAR[44]=93.+.0023*a12; // p2
503  }
504  else
505  {
506  G4double p1a10=2.2e-28*a10;
507  G4double r4a16=6.e14/a16;
508  G4double s4a16=r4a16*r4a16;
509  // a24
510  // a36
511  // The main pre-exponent (peh_sg)
512  lastPAR[ 9]=4.5*std::pow(a,1.15); // p1
513  lastPAR[10]=.06*std::pow(a,.6); // p2
514  lastPAR[11]=.6*a/(1.+2.e15/a16); // p3
515  lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32); // p4
516  lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5); // p5
517  lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12); // p6
518  // The main slope (peh_sl)
519  lastPAR[15]=400./a12+2.e-22*a9; // p1
520  lastPAR[16]=1.e-32*a12/(1.+5.e22/a14); // p2
521  lastPAR[17]=1000./a2+9.5*sa*ssa; // p3
522  lastPAR[18]=4.e-6*a*asa+1.e11/a16; // p4
523  lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16); // p5
524  lastPAR[20]=9.+100./a; // p6
525  // The main quadratic (peh_sh)
526  lastPAR[21]=.002*a3+3.e7/a6; // p1
527  lastPAR[22]=7.e-15*a4*asa; // p2
528  lastPAR[23]=9000./a4; // p3
529  // The 1st max pre-exponent (peh_qq)
530  lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4); // p1
531  lastPAR[25]=1.e-5*a2+2.e14/a16; // p2
532  lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12); // p3
533  lastPAR[27]=.016*asa/(1.+5.e16/a16); // p4
534  // The 1st max slope (peh_qs)
535  lastPAR[28]=.002*a4/(1.+7.e7/std::pow(a-6.83,14)); // p1
536  lastPAR[29]=2.e6/a6+7.2/std::pow(a,.11); // p2
537  lastPAR[30]=11.*a3/(1.+7.e23/a16/a8); // p3
538  lastPAR[31]=100./asa; // p4
539  // The 2nd max pre-exponent (peh_ss)
540  lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4); // p1
541  lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8); // p2
542  lastPAR[34]=1.3+3.e5/a4; // p3
543  lastPAR[35]=500./(a2+50.)+3; // p4
544  lastPAR[36]=1.e-9/a+s4a16*s4a16; // p5
545  // The 2nd max slope (peh_sb)
546  lastPAR[37]=.4*asa+3.e-9*a6; // p1
547  lastPAR[38]=.0005*a5; // p2
548  lastPAR[39]=.002*a5; // p3
549  lastPAR[40]=10.; // p4
550  // The effective pre-exponent (peh_us)
551  lastPAR[41]=.05+.005*a; // p1
552  lastPAR[42]=7.e-8/sa; // p2
553  lastPAR[43]=.8*sa; // p3
554  lastPAR[44]=.02*sa; // p4
555  lastPAR[45]=1.e8/a3; // p5
556  lastPAR[46]=3.e32/(a32+1.e32); // p6
557  // The effective slope (peh_ub)
558  lastPAR[47]=24.; // p1
559  lastPAR[48]=20./sa; // p2
560  lastPAR[49]=7.e3*a/(sa+1.); // p3
561  lastPAR[50]=900.*sa/(1.+500./a3); // p4
562  }
563  // Parameter for lowEnergyNeutrons
564  lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
565  }
566  lastPAR[nLast]=pwd;
567  // and initialize the zero element of the table
568  G4double lp=lPMin; // ln(momentum)
569  G4bool memCS=onlyCS; // ??
570  onlyCS=false;
571  lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
572  onlyCS=memCS;
573  lastSST[0]=theSS;
574  lastS1T[0]=theS1;
575  lastB1T[0]=theB1;
576  lastS2T[0]=theS2;
577  lastB2T[0]=theB2;
578  lastS3T[0]=theS3;
579  lastB3T[0]=theB3;
580  lastS4T[0]=theS4;
581  lastB4T[0]=theB4;
582  }
583  if(LP>ILP)
584  {
585  G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
586  if(ini<0) ini=0;
587  if(ini<nPoints)
588  {
589  G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
590  if(fin>=nPoints) fin=nLast; // Limit of the tabular initialization
591  if(fin>=ini)
592  {
593  G4double lp=0.;
594  for(G4int ip=ini; ip<=fin; ip++) // Calculate tabular CS,S1,B1,S2,B2,S3,B3
595  {
596  lp=lPMin+ip*dlnP; // ln(momentum)
597  G4bool memCS=onlyCS;
598  onlyCS=false;
599  lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
600  onlyCS=memCS;
601  lastSST[ip]=theSS;
602  lastS1T[ip]=theS1;
603  lastB1T[ip]=theB1;
604  lastS2T[ip]=theS2;
605  lastB2T[ip]=theB2;
606  lastS3T[ip]=theS3;
607  lastB3T[ip]=theB3;
608  lastS4T[ip]=theS4;
609  lastB4T[ip]=theB4;
610  }
611  return lp;
612  }
613  else G4cout<<"*Warning*G4ChipsHyperonElasticXS::GetPTables: PDG="<<PDG
614  <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP
615  <<" > ILP="<<ILP<<" nothing is done!"<<G4endl;
616  }
617  else G4cout<<"*Warning*G4ChipsHyperonElasticXS::GetPTables: PDG="<<PDG
618  <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
619  <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
620  }
621  } else {
622  // G4cout<<"*Error*G4ChipsHyperonElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ
623  // <<", N="<<tgN<<", while it is defined only for Hyperons"<<G4endl;
624  // throw G4QException("G4ChipsHyperonElasticXS::GetPTables:onlyaBA implemented");
626  ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
627  << ", while it is defined only for Hyperons" << G4endl;
628  G4Exception("G4ChipsHyperonElasticXS::GetPTables()", "HAD_CHPS_0000",
629  FatalException, ed);
630  }
631  return ILP;
632 }
633 
634 // Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
636 {
637  static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
638  static const G4double third=1./3.;
639  static const G4double fifth=1./5.;
640  static const G4double sevth=1./7.;
641  if(PDG==3222 || PDG<3000 || PDG>3334)G4cout<<"*Warning*G4QHyElCS::GET:PDG="<<PDG<<G4endl;
642  if(onlyCS)G4cout<<"*Warning*G4ChipsHyperonElasticXS::GetExchanT: onlyCS=1"<<G4endl;
643  if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
644  G4double q2=0.;
645  if(tgZ==1 && tgN==0) // ===> p+p=p+p
646  {
647  G4double E1=lastTM*theB1;
648  G4double R1=(1.-std::exp(-E1));
649  G4double E2=lastTM*theB2;
650  G4double R2=(1.-std::exp(-E2*E2*E2));
651  G4double E3=lastTM*theB3;
652  G4double R3=(1.-std::exp(-E3));
653  G4double I1=R1*theS1/theB1;
654  G4double I2=R2*theS2;
655  G4double I3=R3*theS3;
656  G4double I12=I1+I2;
657  G4double rand=(I12+I3)*G4UniformRand();
658  if (rand<I1 )
659  {
660  G4double ran=R1*G4UniformRand();
661  if(ran>1.) ran=1.;
662  q2=-std::log(1.-ran)/theB1;
663  }
664  else if(rand<I12)
665  {
666  G4double ran=R2*G4UniformRand();
667  if(ran>1.) ran=1.;
668  q2=-std::log(1.-ran);
669  if(q2<0.) q2=0.;
670  q2=std::pow(q2,third)/theB2;
671  }
672  else
673  {
674  G4double ran=R3*G4UniformRand();
675  if(ran>1.) ran=1.;
676  q2=-std::log(1.-ran)/theB3;
677  }
678  }
679  else
680  {
681  G4double a=tgZ+tgN;
682  G4double E1=lastTM*(theB1+lastTM*theSS);
683  G4double R1=(1.-std::exp(-E1));
684  G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
685  G4double tm2=lastTM*lastTM;
686  G4double E2=lastTM*tm2*theB2; // power 3 for lowA, 5 for HighA (1st)
687  if(a>6.5)E2*=tm2; // for heavy nuclei
688  G4double R2=(1.-std::exp(-E2));
689  G4double E3=lastTM*theB3;
690  if(a>6.5)E3*=tm2*tm2*tm2; // power 1 for lowA, 7 (2nd) for HighA
691  G4double R3=(1.-std::exp(-E3));
692  G4double E4=lastTM*theB4;
693  G4double R4=(1.-std::exp(-E4));
694  G4double I1=R1*theS1;
695  G4double I2=R2*theS2;
696  G4double I3=R3*theS3;
697  G4double I4=R4*theS4;
698  G4double I12=I1+I2;
699  G4double I13=I12+I3;
700  G4double rand=(I13+I4)*G4UniformRand();
701  if(rand<I1)
702  {
703  G4double ran=R1*G4UniformRand();
704  if(ran>1.) ran=1.;
705  q2=-std::log(1.-ran)/theB1;
706  if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
707  }
708  else if(rand<I12)
709  {
710  G4double ran=R2*G4UniformRand();
711  if(ran>1.) ran=1.;
712  q2=-std::log(1.-ran)/theB2;
713  if(q2<0.) q2=0.;
714  if(a<6.5) q2=std::pow(q2,third);
715  else q2=std::pow(q2,fifth);
716  }
717  else if(rand<I13)
718  {
719  G4double ran=R3*G4UniformRand();
720  if(ran>1.) ran=1.;
721  q2=-std::log(1.-ran)/theB3;
722  if(q2<0.) q2=0.;
723  if(a>6.5) q2=std::pow(q2,sevth);
724  }
725  else
726  {
727  G4double ran=R4*G4UniformRand();
728  if(ran>1.) ran=1.;
729  q2=-std::log(1.-ran)/theB4;
730  if(a<6.5) q2=lastTM-q2; // u reduced for lightA (starts from 0)
731  }
732  }
733  if(q2<0.) q2=0.;
734  if(!(q2>=-1.||q2<=1.))G4cout<<"*NAN*G4QHyElasticCrossSect::GetExchangeT:-t="<<q2<<G4endl;
735  if(q2>lastTM)
736  {
737  q2=lastTM;
738  }
739  return q2*GeVSQ;
740 }
741 
742 // Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
743 G4double G4ChipsHyperonElasticXS::GetSlope(G4int tgZ, G4int tgN, G4int PDG)
744 {
745  static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
746  if(onlyCS)G4cout<<"*Warning*G4ChipsHyperonElasticXS::GetSlope: onlCS=true"<<G4endl;
747  if(lastLP<-4.3) return 0.; // S-wave for p<14 MeV/c (kinE<.1MeV)
748  if(PDG==3222 || PDG<3000 || PDG>3334)
749  {
750  // G4cout<<"*Error*G4ChipsHyperonElasticXS::GetSlope: PDG="<<PDG<<", Z="<<tgZ
751  // <<", N="<<tgN<<", while it is defined only for Hyperons"<<G4endl;
752  // throw G4QException("G4ChipsHyperonElasticXS::GetSlope: HypA are implemented");
754  ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
755  << ", while it is defined only for Hyperons" << G4endl;
756  G4Exception("G4ChipsHyperonElasticXS::GetSlope()", "HAD_CHPS_0000",
757  FatalException, ed);
758  }
759  if(theB1<0.) theB1=0.;
760  if(!(theB1>=-1.||theB1<=1.)) G4cout<<"*NAN*G4QHyElasticCrossS::Getslope:"<<theB1<<G4endl;
761  return theB1/GeVSQ;
762 }
763 
764 // Returns half max(Q2=-t) in independent units (MeV^2)
765 G4double G4ChipsHyperonElasticXS::GetHMaxT()
766 {
767  static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
768  return lastTM*HGeVSQ;
769 }
770 
771 // lastLP is used, so calculating tables, one need to remember and then recover lastLP
772 G4double G4ChipsHyperonElasticXS::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
773  G4int tgN)
774 {
775  if(PDG==3222 || PDG<3000 || PDG>3334) G4cout<<"*Warning*G4QHypElCS::GTV:P="<<PDG<<G4endl;
776  if(tgZ<0 || tgZ>92)
777  {
778  G4cout<<"*Warning*G4QHyperonElastCS::GetTabValue:(1-92) NoIsotopesFor Z="<<tgZ<<G4endl;
779  return 0.;
780  }
781  G4int iZ=tgZ-1; // Z index
782  if(iZ<0)
783  {
784  iZ=0; // conversion of the neutron target to the proton target
785  tgZ=1;
786  tgN=0;
787  }
788  G4double p=std::exp(lp); // momentum
789  G4double sp=std::sqrt(p); // sqrt(p)
790  G4double p2=p*p;
791  G4double p3=p2*p;
792  G4double p4=p3*p;
793  if ( tgZ == 1 && tgN == 0 ) // Hyperon+P
794  {
795  G4double dl2=lp-lastPAR[9];
796  theSS=lastPAR[32];
797  theS1=(lastPAR[10]+lastPAR[11]*dl2*dl2)/(1.+lastPAR[12]/p4/p)+
798  (lastPAR[13]/p2+lastPAR[14]*p)/(p4+lastPAR[15]*sp);
799  theB1=lastPAR[16]*std::pow(p,lastPAR[17])/(1.+lastPAR[18]/p3);
800  theS2=lastPAR[19]+lastPAR[20]/(p4+lastPAR[21]*p);
801  theB2=lastPAR[22]+lastPAR[23]/(p4+lastPAR[24]/sp);
802  theS3=lastPAR[25]+lastPAR[26]/(p4*p4+lastPAR[27]*p2+lastPAR[28]);
803  theB3=lastPAR[29]+lastPAR[30]/(p4+lastPAR[31]);
804  theS4=0.;
805  theB4=0.;
806  // Returns the total elastic pim-p cross-section (to avoid spoiling lastSIG)
807  G4double dp=lp-lastPAR[4];
808  return lastPAR[0]/(lastPAR[1]+p2*(lastPAR[2]+p2))+(lastPAR[3]*dp*dp+lastPAR[5]+
809  lastPAR[6]/p2)/(1.+lastPAR[7]/sp+lastPAR[8]/p4);
810  }
811  else
812  {
813  G4double p5=p4*p;
814  G4double p6=p5*p;
815  G4double p8=p6*p2;
816  G4double p10=p8*p2;
817  G4double p12=p10*p2;
818  G4double p16=p8*p8;
819  //G4double p24=p16*p8;
820  G4double dl=lp-5.;
821  G4double a=tgZ+tgN;
822  G4double pah=std::pow(p,a/2);
823  G4double pa=pah*pah;
824  G4double pa2=pa*pa;
825  if(a<6.5)
826  {
827  theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
828  (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
829  theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
830  theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
831  theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
832  theB2=lastPAR[27]*std::pow(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
833  theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
834  theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
835  theS4=p2*(pah*lastPAR[38]*std::exp(-pah*lastPAR[39])+
836  lastPAR[40]/(1.+lastPAR[41]*std::pow(p,lastPAR[42])));
837  theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
838  }
839  else
840  {
841  theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
842  lastPAR[13]/(p5+lastPAR[14]/p16);
843  theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/std::pow(p,lastPAR[20]))+
844  lastPAR[17]/(1.+lastPAR[18]/p4);
845  theSS=lastPAR[21]/(p4/std::pow(p,lastPAR[23])+lastPAR[22]/p4);
846  theS2=lastPAR[24]/p4/(std::pow(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
847  theB2=lastPAR[28]/std::pow(p,lastPAR[29])+lastPAR[30]/std::pow(p,lastPAR[31]);
848  theS3=lastPAR[32]/std::pow(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
849  lastPAR[33]/(1.+lastPAR[34]/p6);
850  theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
851  theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
852  (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
853  theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
854  }
855  // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
856  G4double dlp=lp-lastPAR[5]; // ax
857  // p1 p2 p3 p4 p5
858  return (lastPAR[0]*dlp*dlp+lastPAR[1])/(1.+lastPAR[2]/p)+lastPAR[3]/(p3+lastPAR[4]);
859  }
860  return 0.;
861 } // End of GetTableValues
862 
863 // Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
864 G4double G4ChipsHyperonElasticXS::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
865  G4double pP)
866 {
867  static const G4double mLamb= G4Lambda::Lambda()->GetPDGMass()*.001; // MeV to GeV
868  static const G4double mLa2= mLamb*mLamb;
869  G4double pP2=pP*pP; // squared momentum of the projectile
870  if(tgZ || tgN>-1) // --> Hyperon-A
871  {
872  G4double mt=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIon(tgZ,tgZ+tgN,0)->GetPDGMass()*.001; // Target mass in GeV
873 
874  G4double dmt=mt+mt;
875  G4double mds=dmt*std::sqrt(pP2+mLa2)+mLa2+mt*mt; // Mondelstam mds (@@ other hyperons?)
876  return dmt*dmt*pP2/mds;
877  }
878  else
879  {
880  // G4cout<<"*Error*G4ChipsHyperonElasticXS::GetQ2ma:PDG="<<PDG<<",Z="<<tgZ<<",N="
881  // <<tgN<<", while it is defined only for p projectiles & Z_target>0"<<G4endl;
882  // throw G4QException("G4ChipsHyperonElasticXS::GetQ2max: only HyperA implemented");
884  ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
885  << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
886  G4Exception("G4ChipsHyperonElasticXS::GetQ2max()", "HAD_CHPS_0000",
887  FatalException, ed);
888  return 0;
889  }
890 }
int gigaelectronvolt
Definition: hepunit.py:110
fin
Definition: AddMC.C:2
tuple a
Definition: test.py:11
std::ostringstream G4ExceptionDescription
Definition: globals.hh:76
ifstream in
Definition: comparison.C:7
const char * p
Definition: xmltok.h:285
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
Definition: G4IonTable.cc:449
static G4OmegaMinus * OmegaMinus()
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
G4double GetExchangeT(G4int tZ, G4int tN, G4int pPDG)
G4ParticleDefinition * GetDefinition() const
#define G4ThreadLocal
Definition: tls.hh:52
int G4int
Definition: G4Types.hh:78
int millibarn
Definition: hepunit.py:40
static G4SigmaZero * SigmaZero()
Definition: G4SigmaZero.cc:99
G4double GetTotalMomentum() const
static G4XiZero * XiZero()
Definition: G4XiZero.cc:106
G4IonTable * GetIonTable() const
#define G4UniformRand()
Definition: Randomize.hh:87
G4GLOB_DLL std::ostream G4cout
bool G4bool
Definition: G4Types.hh:79
static G4XiMinus * XiMinus()
Definition: G4XiMinus.cc:106
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
static G4SigmaMinus * SigmaMinus()
#define G4_DECLARE_XS_FACTORY(cross_section)
G4double GetPDGMass() const
static G4ParticleTable * GetParticleTable()
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
#define G4endl
Definition: G4ios.hh:61
static G4SigmaPlus * SigmaPlus()
Definition: G4SigmaPlus.cc:108
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
static G4Lambda * Lambda()
Definition: G4Lambda.cc:108
double G4double
Definition: G4Types.hh:76