Geant4_10
CexmcChargeExchangeProductionModel.hh
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 /*
27  * =============================================================================
28  *
29  * Filename: CexmcChargeExchangeProductionModel.hh
30  *
31  * Description: charge exchange physics itself
32  *
33  * Version: 1.0
34  * Created: 01.11.2009 00:30:46
35  * Revision: none
36  * Compiler: gcc
37  *
38  * Author: Alexey Radkov (),
39  * Company: PNPI
40  *
41  * =============================================================================
42  */
43 
44 #ifndef CEXMC_CHARGE_EXCHANGE_PRODUCTION_MODEL_HH
45 #define CEXMC_CHARGE_EXCHANGE_PRODUCTION_MODEL_HH
46 
47 #include <G4HadronicInteraction.hh>
48 #include <G4HadFinalState.hh>
49 #include <G4HadProjectile.hh>
50 #include <G4Nucleus.hh>
51 #include <G4Proton.hh>
52 #include <G4Neutron.hh>
53 #include "CexmcProductionModel.hh"
54 #include "CexmcGenbod.hh"
56 #include "CexmcException.hh"
57 
58 
59 template < typename OutputParticle >
62 {
63  public:
65 
67 
68  public:
69  G4HadFinalState * ApplyYourself( const G4HadProjectile & projectile,
70  G4Nucleus & targetNucleus );
71 
72  private:
73  G4double nucleusParticleMass;
74 
75  CexmcPhaseSpaceGenerator * phaseSpaceGenerator;
76 };
77 
78 
79 template < typename OutputParticle >
84  nucleusParticleMass( 0 ), phaseSpaceGenerator( NULL )
85 {
88  outputParticle = OutputParticle::Definition();
90 
91  nucleusParticleMass = nucleusParticle->GetPDGMass();
92 
97 
99 
100  inVec.push_back( &productionModelData.incidentParticleSCM );
101  inVec.push_back( &productionModelData.nucleusParticleSCM );
102 
104 
105  outVec.push_back( CexmcPhaseSpaceOutVectorElement(
107  outputParticle->GetPDGMass() ) );
108  outVec.push_back( CexmcPhaseSpaceOutVectorElement(
111 
112 #ifdef CEXMC_USE_GENBOD
113  phaseSpaceGenerator = new CexmcGenbod;
114 #else
115  phaseSpaceGenerator = new CexmcReimplementedGenbod;
116 #endif
117 
118  phaseSpaceGenerator->SetParticles( inVec, outVec );
119 }
120 
121 
122 template < typename OutputParticle >
125 {
126  delete phaseSpaceGenerator;
127 }
128 
129 
130 template < typename OutputParticle >
132  ApplyYourself( const G4HadProjectile & projectile,
133  G4Nucleus & targetNucleus )
134 {
135  theParticleChange.Clear();
136 
137  G4double kinEnergy( projectile.GetKineticEnergy() );
138  G4HadProjectile & theProjectile( const_cast< G4HadProjectile & >(
139  projectile ) );
140  const G4LorentzRotation & projToLab(
141  const_cast< const G4LorentzRotation & >(
142  theProjectile.GetTrafoToLab() ) );
143  productionModelData.incidentParticleLAB = projectile.Get4Momentum();
144  productionModelData.incidentParticleLAB.transform( projToLab );
145  productionModelData.nucleusParticleLAB.setPx( 0 );
146  productionModelData.nucleusParticleLAB.setPy( 0 );
147  productionModelData.nucleusParticleLAB.setPz( 0 );
148  productionModelData.nucleusParticleLAB.setE( nucleusParticleMass );
149 
150  if ( fermiMotionIsOn )
151  {
152  G4ThreeVector targetNucleusMomentum(
153  targetNucleus.GetFermiMomentum() );
154  G4double targetNucleusEnergy(
155  std::sqrt( targetNucleusMomentum.mag2() +
156  nucleusParticleMass * nucleusParticleMass ) );
157  productionModelData.nucleusParticleLAB = G4LorentzVector(
158  targetNucleusMomentum, targetNucleusEnergy );
159  }
160  productionModelData.nucleusParticleLAB.transform( projToLab );
161  G4LorentzVector lVecSum( productionModelData.incidentParticleLAB +
162  productionModelData.nucleusParticleLAB );
163  G4ThreeVector boostVec( lVecSum.boostVector() );
164 
165  productionModelData.incidentParticleSCM =
166  productionModelData.incidentParticleLAB;
167  productionModelData.nucleusParticleSCM =
168  productionModelData.nucleusParticleLAB;
169 
170  productionModelData.incidentParticleSCM.boost( -boostVec );
171  productionModelData.nucleusParticleSCM.boost( -boostVec );
172 
173  triggeredAngularRanges.clear();
174 
175  if ( ! phaseSpaceGenerator->CheckKinematics() )
176  {
177  theParticleChange.SetEnergyChange( kinEnergy );
178  theParticleChange.SetMomentumChange(
179  projectile.Get4Momentum().vect().unit());
180  return &theParticleChange;
181  }
182 
183  do
184  {
185  phaseSpaceGenerator->Generate();
186  G4double cosTheta( productionModelData.outputParticleSCM.cosTheta() );
187  for ( CexmcAngularRangeList::iterator k( angularRanges.begin() );
188  k != angularRanges.end(); ++k )
189  {
190  if ( cosTheta <= k->top && cosTheta > k->bottom )
191  triggeredAngularRanges.push_back( CexmcAngularRange(
192  k->top, k->bottom, k->index ) );
193  }
194  } while ( triggeredAngularRanges.empty() );
195 
196  productionModelData.outputParticleLAB =
197  productionModelData.outputParticleSCM;
198  productionModelData.nucleusOutputParticleLAB =
199  productionModelData.nucleusOutputParticleSCM;
200 
201  productionModelData.outputParticleLAB.boost( boostVec );
202  productionModelData.nucleusOutputParticleLAB.boost( boostVec );
203 
204  theParticleChange.SetStatusChange( stopAndKill );
205  theParticleChange.SetEnergyChange( 0.0 );
206 
207  G4DynamicParticle * secOutParticle( new G4DynamicParticle(
208  outputParticle,
209  productionModelData.outputParticleLAB ) );
210  theParticleChange.AddSecondary( secOutParticle );
211  G4DynamicParticle * secNeutron( new G4DynamicParticle(
212  nucleusOutputParticle,
213  productionModelData.nucleusOutputParticleLAB ) );
214  theParticleChange.AddSecondary( secNeutron );
215 
216  /* projectile->GetDefinition() shall always be identical to incidentParticle
217  * as far as CexmcHadronicProcess::IsApplicable() will check that only
218  * incidentParticle is allowed. Here is mostly unnecessary assignment. */
219  productionModelData.incidentParticle = projectile.GetDefinition();
220 
221  return &theParticleChange;
222 }
223 
224 
225 #endif
226 
const G4String CexmcChargeExchangeInteractionName("Cexmc"+CexmcChargeExchangeProductionModelName)
std::vector< const G4LorentzVector * > CexmcPhaseSpaceInVector
Hep3Vector boostVector() const
const G4ParticleDefinition * nucleusParticle
G4ParticleDefinition * nucleusOutputParticle
std::vector< CexmcPhaseSpaceOutVectorElement > CexmcPhaseSpaceOutVector
const G4ParticleDefinition * incidentParticle
CexmcProductionModelData productionModelData
G4HadFinalState * ApplyYourself(const G4HadProjectile &projectile, G4Nucleus &targetNucleus)
const G4ParticleDefinition * outputParticle
static G4Proton * Definition()
Definition: G4Proton.cc:49
Hep3Vector vect() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4ParticleDefinition * nucleusParticle
const G4LorentzVector & Get4Momentum() const
G4ThreeVector GetFermiMomentum()
Definition: G4Nucleus.cc:398
G4double GetPDGMass() const
G4ParticleDefinition * incidentParticle
Hep3Vector unit() const
static G4PionMinus * Definition()
Definition: G4PionMinus.cc:52
static G4Neutron * Definition()
Definition: G4Neutron.cc:54
HepLorentzVector & transform(const HepRotation &)
double G4double
Definition: G4Types.hh:76
const G4ParticleDefinition * nucleusOutputParticle
void SetParticles(const CexmcPhaseSpaceInVector &inVec_, const CexmcPhaseSpaceOutVector &outVec_)
const G4String CexmcChargeExchangeProductionModelName("ChargeExchange")
G4ParticleDefinition * outputParticle
CLHEP::HepLorentzVector G4LorentzVector