Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
trees.cc
Go to the documentation of this file.
1 /* trees.c -- output deflated data using Huffman coding
2  * Copyright (C) 1995-2003 Jean-loup Gailly
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 /*
7  * ALGORITHM
8  *
9  * The "deflation" process uses several Huffman trees. The more
10  * common source values are represented by shorter bit sequences.
11  *
12  * Each code tree is stored in a compressed form which is itself
13  * a Huffman encoding of the lengths of all the code strings (in
14  * ascending order by source values). The actual code strings are
15  * reconstructed from the lengths in the inflate process, as described
16  * in the deflate specification.
17  *
18  * REFERENCES
19  *
20  * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
21  * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
22  *
23  * Storer, James A.
24  * Data Compression: Methods and Theory, pp. 49-50.
25  * Computer Science Press, 1988. ISBN 0-7167-8156-5.
26  *
27  * Sedgewick, R.
28  * Algorithms, p290.
29  * Addison-Wesley, 1983. ISBN 0-201-06672-6.
30  */
31 
32 /* @(#) $Id: trees.cc,v 1.1 2005-05-12 21:04:53 duns Exp $ */
33 
34 /* #define GEN_TREES_H */
35 
36 #include "deflate.h"
37 
38 #ifdef DEBUG
39 # include <ctype.h>
40 #endif
41 
42 /* ===========================================================================
43  * Constants
44  */
45 
46 #define MAX_BL_BITS 7
47 /* Bit length codes must not exceed MAX_BL_BITS bits */
48 
49 #define END_BLOCK 256
50 /* end of block literal code */
51 
52 #define REP_3_6 16
53 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
54 
55 #define REPZ_3_10 17
56 /* repeat a zero length 3-10 times (3 bits of repeat count) */
57 
58 #define REPZ_11_138 18
59 /* repeat a zero length 11-138 times (7 bits of repeat count) */
60 
61 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
62  = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
63 
64 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
65  = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
66 
67 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
68  = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
69 
71  = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
72 /* The lengths of the bit length codes are sent in order of decreasing
73  * probability, to avoid transmitting the lengths for unused bit length codes.
74  */
75 
76 #define Buf_size (8 * 2*sizeof(char))
77 /* Number of bits used within bi_buf. (bi_buf might be implemented on
78  * more than 16 bits on some systems.)
79  */
80 
81 /* ===========================================================================
82  * Local data. These are initialized only once.
83  */
84 
85 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
86 
87 #if defined(GEN_TREES_H) || !defined(STDC)
88 /* non ANSI compilers may not accept trees.h */
89 
91 /* The static literal tree. Since the bit lengths are imposed, there is no
92  * need for the L_CODES extra codes used during heap construction. However
93  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
94  * below).
95  */
96 
98 /* The static distance tree. (Actually a trivial tree since all codes use
99  * 5 bits.)
100  */
101 
103 /* Distance codes. The first 256 values correspond to the distances
104  * 3 .. 258, the last 256 values correspond to the top 8 bits of
105  * the 15 bit distances.
106  */
107 
109 /* length code for each normalized match length (0 == MIN_MATCH) */
110 
112 /* First normalized length for each code (0 = MIN_MATCH) */
113 
115 /* First normalized distance for each code (0 = distance of 1) */
116 
117 #else
118 # include "trees.h"
119 #endif /* GEN_TREES_H */
120 
121 struct static_tree_desc_s {
122  const ct_data *static_tree; /* static tree or NULL */
123  const intf *extra_bits; /* extra bits for each code or NULL */
124  int extra_base; /* base index for extra_bits */
125  int elems; /* max number of elements in the tree */
126  int max_length; /* max bit length for the codes */
127 };
128 
131 
134 
136 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
137 
138 /* ===========================================================================
139  * Local (static) routines in this file.
140  */
141 
142 local void tr_static_init OF((void));
144 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
145 local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
146 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
147 local void build_tree OF((deflate_state *s, tree_desc *desc));
148 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
149 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
151 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
152  int blcodes));
153 local void compress_block OF((deflate_state *s, ct_data *ltree,
154  ct_data *dtree));
156 local unsigned bi_reverse OF((unsigned value, int length));
157 local void bi_windup OF((deflate_state *s));
158 local void bi_flush OF((deflate_state *s));
159 local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
160  int header));
161 
162 #ifdef GEN_TREES_H
163 local void gen_trees_header OF((void));
164 #endif
165 
166 #ifndef DEBUG
167 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
168  /* Send a code of the given tree. c and tree must not have side effects */
169 
170 #else /* DEBUG */
171 # define send_code(s, c, tree) \
172  { if (z_verbose>2) fprintf(stderr,(char*)"\ncd %3d ",(c)); \
173  send_bits(s, tree[c].Code, tree[c].Len); }
174 #endif
175 
176 /* ===========================================================================
177  * Output a short LSB first on the stream.
178  * IN assertion: there is enough room in pendingBuf.
179  */
180 #define put_short(s, w) { \
181  put_byte(s, (uch)((w) & 0xff)); \
182  put_byte(s, (uch)((ush)(w) >> 8)); \
183 }
184 
185 /* ===========================================================================
186  * Send a value on a given number of bits.
187  * IN assertion: length <= 16 and value fits in length bits.
188  */
189 #ifdef DEBUG
190 local void send_bits OF((deflate_state *s, int value, int length));
191 
192 local void send_bits(deflate_state *s, int value, int length)
193 {
194  Tracevv((stderr,(char*)" l %2d v %4x ", length, value));
195  Assert(length > 0 && length <= 15, (char*)"invalid length");
196  s->bits_sent += (ulg)length;
197 
198  /* If not enough room in bi_buf, use (valid) bits from bi_buf and
199  * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
200  * unused bits in value.
201  */
202  if (s->bi_valid > (int)Buf_size - length) {
203  s->bi_buf |= (value << s->bi_valid);
204  put_short(s, s->bi_buf);
205  s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
206  s->bi_valid += length - Buf_size;
207  } else {
208  s->bi_buf |= value << s->bi_valid;
209  s->bi_valid += length;
210  }
211 }
212 #else /* !DEBUG */
213 
214 #define send_bits(s, value, length) \
215 { int len = length;\
216  if (s->bi_valid > (int)Buf_size - len) {\
217  int val = value;\
218  s->bi_buf |= (val << s->bi_valid);\
219  put_short(s, s->bi_buf);\
220  s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
221  s->bi_valid += len - Buf_size;\
222  } else {\
223  s->bi_buf |= (value) << s->bi_valid;\
224  s->bi_valid += len;\
225  }\
226 }
227 #endif /* DEBUG */
228 
229 
230 /* the arguments must not have side effects */
231 
232 /* ===========================================================================
233  * Initialize the various 'constant' tables.
234  */
236 {
237 #if defined(GEN_TREES_H) || !defined(STDC)
238  static int static_init_done = 0;
239  int n; /* iterates over tree elements */
240  int bits; /* bit counter */
241  int length; /* length value */
242  int code; /* code value */
243  int dist; /* distance index */
244  ush bl_count[MAX_BITS+1];
245  /* number of codes at each bit length for an optimal tree */
246 
247  if (static_init_done) return;
248 
249  /* For some embedded targets, global variables are not initialized: */
255 
256  /* Initialize the mapping length (0..255) -> length code (0..28) */
257  length = 0;
258  for (code = 0; code < LENGTH_CODES-1; code++) {
259  base_length[code] = length;
260  for (n = 0; n < (1<<extra_lbits[code]); n++) {
261  _length_code[length++] = (uch)code;
262  }
263  }
264  Assert (length == 256, (char*)"tr_static_init: length != 256");
265  /* Note that the length 255 (match length 258) can be represented
266  * in two different ways: code 284 + 5 bits or code 285, so we
267  * overwrite length_code[255] to use the best encoding:
268  */
269  _length_code[length-1] = (uch)code;
270 
271  /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
272  dist = 0;
273  for (code = 0 ; code < 16; code++) {
274  base_dist[code] = dist;
275  for (n = 0; n < (1<<extra_dbits[code]); n++) {
276  _dist_code[dist++] = (uch)code;
277  }
278  }
279  Assert (dist == 256, (char*)"tr_static_init: dist != 256");
280  dist >>= 7; /* from now on, all distances are divided by 128 */
281  for ( ; code < D_CODES; code++) {
282  base_dist[code] = dist << 7;
283  for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
284  _dist_code[256 + dist++] = (uch)code;
285  }
286  }
287  Assert (dist == 256, (char*)"tr_static_init: 256+dist != 512");
288 
289  /* Construct the codes of the static literal tree */
290  for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
291  n = 0;
292  while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
293  while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
294  while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
295  while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
296  /* Codes 286 and 287 do not exist, but we must include them in the
297  * tree construction to get a canonical Huffman tree (longest code
298  * all ones)
299  */
300  gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
301 
302  /* The static distance tree is trivial: */
303  for (n = 0; n < D_CODES; n++) {
304  static_dtree[n].Len = 5;
305  static_dtree[n].Code = bi_reverse((unsigned)n, 5);
306  }
307  static_init_done = 1;
308 
309 # ifdef GEN_TREES_H
310  gen_trees_header();
311 # endif
312 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
313 }
314 
315 /* ===========================================================================
316  * Genererate the file trees.h describing the static trees.
317  */
318 #ifdef GEN_TREES_H
319 # ifndef DEBUG
320 # include <stdio.h>
321 # endif
322 
323 # define SEPARATOR(i, last, width) \
324  ((i) == (last)? (char*)"\n};\n\n" : \
325  ((i) % (width) == (width)-1 ? (char*)",\n" : ", "))
326 
327 void gen_trees_header()
328 {
329  FILE *header = fopen((char*)"trees.h", (char*)"w");
330  int i;
331 
332  Assert (header != NULL, (char*)"Can't open trees.h");
333  fprintf(header,
334  (char*)"/* header created automatically with -DGEN_TREES_H */\n\n");
335 
336  fprintf(header, (char*)"local const ct_data static_ltree[L_CODES+2] = {\n");
337  for (i = 0; i < L_CODES+2; i++) {
338  fprintf(header, (char*)"{{%3u},{%3u}}%s", static_ltree[i].Code,
339  static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
340  }
341 
342  fprintf(header, (char*)"local const ct_data static_dtree[D_CODES] = {\n");
343  for (i = 0; i < D_CODES; i++) {
344  fprintf(header, (char*)"{{%2u},{%2u}}%s", static_dtree[i].Code,
345  static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
346  }
347 
348  fprintf(header, (char*)"const uch _dist_code[DIST_CODE_LEN] = {\n");
349  for (i = 0; i < DIST_CODE_LEN; i++) {
350  fprintf(header, (char*)"%2u%s", _dist_code[i],
351  SEPARATOR(i, DIST_CODE_LEN-1, 20));
352  }
353 
354  fprintf(header, (char*)"const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
355  for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
356  fprintf(header, (char*)"%2u%s", _length_code[i],
357  SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
358  }
359 
360  fprintf(header, (char*)"local const int base_length[LENGTH_CODES] = {\n");
361  for (i = 0; i < LENGTH_CODES; i++) {
362  fprintf(header, (char*)"%1u%s", base_length[i],
363  SEPARATOR(i, LENGTH_CODES-1, 20));
364  }
365 
366  fprintf(header, (char*)"local const int base_dist[D_CODES] = {\n");
367  for (i = 0; i < D_CODES; i++) {
368  fprintf(header, (char*)"%5u%s", base_dist[i],
369  SEPARATOR(i, D_CODES-1, 10));
370  }
371 
372  fclose(header);
373 }
374 #endif /* GEN_TREES_H */
375 
376 /* ===========================================================================
377  * Initialize the tree data structures for a new zlib stream.
378  */
380 {
381  tr_static_init();
382 
383  s->l_desc.dyn_tree = s->dyn_ltree;
385 
386  s->d_desc.dyn_tree = s->dyn_dtree;
388 
389  s->bl_desc.dyn_tree = s->bl_tree;
391 
392  s->bi_buf = 0;
393  s->bi_valid = 0;
394  s->last_eob_len = 8; /* enough lookahead for inflate */
395 #ifdef DEBUG
396  s->compressed_len = 0L;
397  s->bits_sent = 0L;
398 #endif
399 
400  /* Initialize the first block of the first file: */
401  init_block(s);
402 }
403 
404 /* ===========================================================================
405  * Initialize a new block.
406  */
408 {
409  int n; /* iterates over tree elements */
410 
411  /* Initialize the trees. */
412  for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
413  for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
414  for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
415 
416  s->dyn_ltree[END_BLOCK].Freq = 1;
417  s->opt_len = s->static_len = 0L;
418  s->last_lit = s->matches = 0;
419 }
420 
421 #define SMALLEST 1
422 /* Index within the heap array of least frequent node in the Huffman tree */
423 
424 
425 /* ===========================================================================
426  * Remove the smallest element from the heap and recreate the heap with
427  * one less element. Updates heap and heap_len.
428  */
429 #define pqremove(s, tree, top) \
430 {\
431  top = s->heap[SMALLEST]; \
432  s->heap[SMALLEST] = s->heap[s->heap_len--]; \
433  pqdownheap(s, tree, SMALLEST); \
434 }
435 
436 /* ===========================================================================
437  * Compares to subtrees, using the tree depth as tie breaker when
438  * the subtrees have equal frequency. This minimizes the worst case length.
439  */
440 #define smaller(tree, n, m, depth) \
441  (tree[n].Freq < tree[m].Freq || \
442  (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
443 
444 /* ===========================================================================
445  * Restore the heap property by moving down the tree starting at node k,
446  * exchanging a node with the smallest of its two sons if necessary, stopping
447  * when the heap property is re-established (each father smaller than its
448  * two sons).
449  */
450 local void pqdownheap(deflate_state *s, ct_data *tree, int k)
451 {
452  int v = s->heap[k];
453  int j = k << 1; /* left son of k */
454  while (j <= s->heap_len) {
455  /* Set j to the smallest of the two sons: */
456  if (j < s->heap_len &&
457  smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
458  j++;
459  }
460  /* Exit if v is smaller than both sons */
461  if (smaller(tree, v, s->heap[j], s->depth)) break;
462 
463  /* Exchange v with the smallest son */
464  s->heap[k] = s->heap[j]; k = j;
465 
466  /* And continue down the tree, setting j to the left son of k */
467  j <<= 1;
468  }
469  s->heap[k] = v;
470 }
471 
472 /* ===========================================================================
473  * Compute the optimal bit lengths for a tree and update the total bit length
474  * for the current block.
475  * IN assertion: the fields freq and dad are set, heap[heap_max] and
476  * above are the tree nodes sorted by increasing frequency.
477  * OUT assertions: the field len is set to the optimal bit length, the
478  * array bl_count contains the frequencies for each bit length.
479  * The length opt_len is updated; static_len is also updated if stree is
480  * not null.
481  */
483 {
484  ct_data *tree = desc->dyn_tree;
485  int max_code = desc->max_code;
486  const ct_data *stree = desc->stat_desc->static_tree;
487  const intf *extra = desc->stat_desc->extra_bits;
488  int base = desc->stat_desc->extra_base;
489  int max_length = desc->stat_desc->max_length;
490  int h; /* heap index */
491  int n, m; /* iterate over the tree elements */
492  int bits; /* bit length */
493  int xbits; /* extra bits */
494  ush f; /* frequency */
495  int overflow = 0; /* number of elements with bit length too large */
496 
497  for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
498 
499  /* In a first pass, compute the optimal bit lengths (which may
500  * overflow in the case of the bit length tree).
501  */
502  tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
503 
504  for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
505  n = s->heap[h];
506  bits = tree[tree[n].Dad].Len + 1;
507  if (bits > max_length) bits = max_length, overflow++;
508  tree[n].Len = (ush)bits;
509  /* We overwrite tree[n].Dad which is no longer needed */
510 
511  if (n > max_code) continue; /* not a leaf node */
512 
513  s->bl_count[bits]++;
514  xbits = 0;
515  if (n >= base) xbits = extra[n-base];
516  f = tree[n].Freq;
517  s->opt_len += (ulg)f * (bits + xbits);
518  if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
519  }
520  if (overflow == 0) return;
521 
522  Trace((stderr,(char*)"\nbit length overflow\n"));
523  /* This happens for example on obj2 and pic of the Calgary corpus */
524 
525  /* Find the first bit length which could increase: */
526  do {
527  bits = max_length-1;
528  while (s->bl_count[bits] == 0) bits--;
529  s->bl_count[bits]--; /* move one leaf down the tree */
530  s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
531  s->bl_count[max_length]--;
532  /* The brother of the overflow item also moves one step up,
533  * but this does not affect bl_count[max_length]
534  */
535  overflow -= 2;
536  } while (overflow > 0);
537 
538  /* Now recompute all bit lengths, scanning in increasing frequency.
539  * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
540  * lengths instead of fixing only the wrong ones. This idea is taken
541  * from 'ar' written by Haruhiko Okumura.)
542  */
543  for (bits = max_length; bits != 0; bits--) {
544  n = s->bl_count[bits];
545  while (n != 0) {
546  m = s->heap[--h];
547  if (m > max_code) continue;
548  if (tree[m].Len != (unsigned) bits) {
549  Trace((stderr,(char*)"code %d bits %d->%d\n", m, tree[m].Len, bits));
550  s->opt_len += ((long)bits - (long)tree[m].Len)
551  *(long)tree[m].Freq;
552  tree[m].Len = (ush)bits;
553  }
554  n--;
555  }
556  }
557 }
558 
559 /* ===========================================================================
560  * Generate the codes for a given tree and bit counts (which need not be
561  * optimal).
562  * IN assertion: the array bl_count contains the bit length statistics for
563  * the given tree and the field len is set for all tree elements.
564  * OUT assertion: the field code is set for all tree elements of non
565  * zero code length.
566  */
567 local void gen_codes (ct_data *tree, int max_code, ushf *bl_count)
568 {
569  ush next_code[MAX_BITS+1]; /* next code value for each bit length */
570  ush code = 0; /* running code value */
571  int bits; /* bit index */
572  int n; /* code index */
573 
574  /* The distribution counts are first used to generate the code values
575  * without bit reversal.
576  */
577  for (bits = 1; bits <= MAX_BITS; bits++) {
578  next_code[bits] = code = (code + bl_count[bits-1]) << 1;
579  }
580  /* Check that the bit counts in bl_count are consistent. The last code
581  * must be all ones.
582  */
583  Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
584  (char*)"inconsistent bit counts");
585  Tracev((stderr,(char*)"\ngen_codes: max_code %d ", max_code));
586 
587  for (n = 0; n <= max_code; n++) {
588  int len = tree[n].Len;
589  if (len == 0) continue;
590  /* Now reverse the bits */
591  tree[n].Code = bi_reverse(next_code[len]++, len);
592 
593  Tracecv(tree != static_ltree, (stderr,(char*)"\nn %3d %c l %2d c %4x (%x) ",
594  n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
595  }
596 }
597 
598 /* ===========================================================================
599  * Construct one Huffman tree and assigns the code bit strings and lengths.
600  * Update the total bit length for the current block.
601  * IN assertion: the field freq is set for all tree elements.
602  * OUT assertions: the fields len and code are set to the optimal bit length
603  * and corresponding code. The length opt_len is updated; static_len is
604  * also updated if stree is not null. The field max_code is set.
605  */
607 {
608  ct_data *tree = desc->dyn_tree;
609  const ct_data *stree = desc->stat_desc->static_tree;
610  int elems = desc->stat_desc->elems;
611  int n, m; /* iterate over heap elements */
612  int max_code = -1; /* largest code with non zero frequency */
613  int node; /* new node being created */
614 
615  /* Construct the initial heap, with least frequent element in
616  * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
617  * heap[0] is not used.
618  */
619  s->heap_len = 0, s->heap_max = HEAP_SIZE;
620 
621  for (n = 0; n < elems; n++) {
622  if (tree[n].Freq != 0) {
623  s->heap[++(s->heap_len)] = max_code = n;
624  s->depth[n] = 0;
625  } else {
626  tree[n].Len = 0;
627  }
628  }
629 
630  /* The pkzip format requires that at least one distance code exists,
631  * and that at least one bit should be sent even if there is only one
632  * possible code. So to avoid special checks later on we force at least
633  * two codes of non zero frequency.
634  */
635  while (s->heap_len < 2) {
636  node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
637  tree[node].Freq = 1;
638  s->depth[node] = 0;
639  s->opt_len--; if (stree) s->static_len -= stree[node].Len;
640  /* node is 0 or 1 so it does not have extra bits */
641  }
642  desc->max_code = max_code;
643 
644  /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
645  * establish sub-heaps of increasing lengths:
646  */
647  for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
648 
649  /* Construct the Huffman tree by repeatedly combining the least two
650  * frequent nodes.
651  */
652  node = elems; /* next internal node of the tree */
653  do {
654  pqremove(s, tree, n); /* n = node of least frequency */
655  m = s->heap[SMALLEST]; /* m = node of next least frequency */
656 
657  s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
658  s->heap[--(s->heap_max)] = m;
659 
660  /* Create a new node father of n and m */
661  tree[node].Freq = tree[n].Freq + tree[m].Freq;
662  s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
663  s->depth[n] : s->depth[m]) + 1);
664  tree[n].Dad = tree[m].Dad = (ush)node;
665 #ifdef DUMP_BL_TREE
666  if (tree == s->bl_tree) {
667  fprintf(stderr,(char*)"\nnode %d(%d), sons %d(%d) %d(%d)",
668  node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
669  }
670 #endif
671  /* and insert the new node in the heap */
672  s->heap[SMALLEST] = node++;
673  pqdownheap(s, tree, SMALLEST);
674 
675  } while (s->heap_len >= 2);
676 
677  s->heap[--(s->heap_max)] = s->heap[SMALLEST];
678 
679  /* At this point, the fields freq and dad are set. We can now
680  * generate the bit lengths.
681  */
682  gen_bitlen(s, (tree_desc *)desc);
683 
684  /* The field len is now set, we can generate the bit codes */
685  gen_codes ((ct_data *)tree, max_code, s->bl_count);
686 }
687 
688 /* ===========================================================================
689  * Scan a literal or distance tree to determine the frequencies of the codes
690  * in the bit length tree.
691  */
692 local void scan_tree (deflate_state *s, ct_data *tree, int max_code)
693 {
694  int n; /* iterates over all tree elements */
695  int prevlen = -1; /* last emitted length */
696  int curlen; /* length of current code */
697  int nextlen = tree[0].Len; /* length of next code */
698  int count = 0; /* repeat count of the current code */
699  int max_count = 7; /* max repeat count */
700  int min_count = 4; /* min repeat count */
701 
702  if (nextlen == 0) max_count = 138, min_count = 3;
703  tree[max_code+1].Len = (ush)0xffff; /* guard */
704 
705  for (n = 0; n <= max_code; n++) {
706  curlen = nextlen; nextlen = tree[n+1].Len;
707  if (++count < max_count && curlen == nextlen) {
708  continue;
709  } else if (count < min_count) {
710  s->bl_tree[curlen].Freq += count;
711  } else if (curlen != 0) {
712  if (curlen != prevlen) s->bl_tree[curlen].Freq++;
713  s->bl_tree[REP_3_6].Freq++;
714  } else if (count <= 10) {
715  s->bl_tree[REPZ_3_10].Freq++;
716  } else {
717  s->bl_tree[REPZ_11_138].Freq++;
718  }
719  count = 0; prevlen = curlen;
720  if (nextlen == 0) {
721  max_count = 138, min_count = 3;
722  } else if (curlen == nextlen) {
723  max_count = 6, min_count = 3;
724  } else {
725  max_count = 7, min_count = 4;
726  }
727  }
728 }
729 
730 /* ===========================================================================
731  * Send a literal or distance tree in compressed form, using the codes in
732  * bl_tree.
733  */
734 local void send_tree (deflate_state *s, ct_data *tree, int max_code)
735 {
736  int n; /* iterates over all tree elements */
737  int prevlen = -1; /* last emitted length */
738  int curlen; /* length of current code */
739  int nextlen = tree[0].Len; /* length of next code */
740  int count = 0; /* repeat count of the current code */
741  int max_count = 7; /* max repeat count */
742  int min_count = 4; /* min repeat count */
743 
744  /* tree[max_code+1].Len = -1; */ /* guard already set */
745  if (nextlen == 0) max_count = 138, min_count = 3;
746 
747  for (n = 0; n <= max_code; n++) {
748  curlen = nextlen; nextlen = tree[n+1].Len;
749  if (++count < max_count && curlen == nextlen) {
750  continue;
751  } else if (count < min_count) {
752  do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
753 
754  } else if (curlen != 0) {
755  if (curlen != prevlen) {
756  send_code(s, curlen, s->bl_tree); count--;
757  }
758  Assert(count >= 3 && count <= 6, (char*)" 3_6?");
759  send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
760 
761  } else if (count <= 10) {
762  send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
763 
764  } else {
765  send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
766  }
767  count = 0; prevlen = curlen;
768  if (nextlen == 0) {
769  max_count = 138, min_count = 3;
770  } else if (curlen == nextlen) {
771  max_count = 6, min_count = 3;
772  } else {
773  max_count = 7, min_count = 4;
774  }
775  }
776 }
777 
778 /* ===========================================================================
779  * Construct the Huffman tree for the bit lengths and return the index in
780  * bl_order of the last bit length code to send.
781  */
783 {
784  int max_blindex; /* index of last bit length code of non zero freq */
785 
786  /* Determine the bit length frequencies for literal and distance trees */
787  scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
788  scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
789 
790  /* Build the bit length tree: */
791  build_tree(s, (tree_desc *)(&(s->bl_desc)));
792  /* opt_len now includes the length of the tree representations, except
793  * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
794  */
795 
796  /* Determine the number of bit length codes to send. The pkzip format
797  * requires that at least 4 bit length codes be sent. (appnote.txt says
798  * 3 but the actual value used is 4.)
799  */
800  for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
801  if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
802  }
803  /* Update opt_len to include the bit length tree and counts */
804  s->opt_len += 3*(max_blindex+1) + 5+5+4;
805  Tracev((stderr, (char*)"\ndyn trees: dyn %ld, stat %ld",
806  s->opt_len, s->static_len));
807 
808  return max_blindex;
809 }
810 
811 /* ===========================================================================
812  * Send the header for a block using dynamic Huffman trees: the counts, the
813  * lengths of the bit length codes, the literal tree and the distance tree.
814  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
815  */
816 local void send_all_trees(deflate_state *s, int lcodes, int dcodes, int blcodes)
817 {
818  int rank; /* index in bl_order */
819 
820  Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, (char*)"not enough codes");
821  Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
822  (char*)"too many codes");
823  Tracev((stderr, (char*)"\nbl counts: "));
824  send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
825  send_bits(s, dcodes-1, 5);
826  send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
827  for (rank = 0; rank < blcodes; rank++) {
828  Tracev((stderr, (char*)"\nbl code %2d ", bl_order[rank]));
829  send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
830  }
831  Tracev((stderr, (char*)"\nbl tree: sent %ld", s->bits_sent));
832 
833  send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
834  Tracev((stderr, (char*)"\nlit tree: sent %ld", s->bits_sent));
835 
836  send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
837  Tracev((stderr, (char*)"\ndist tree: sent %ld", s->bits_sent));
838 }
839 
840 /* ===========================================================================
841  * Send a stored block
842  */
843 void _tr_stored_block(deflate_state *s, charf *buf, ulg stored_len, int eof)
844 {
845  send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
846 #ifdef DEBUG
847  s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
848  s->compressed_len += (stored_len + 4) << 3;
849 #endif
850  copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
851 }
852 
853 /* ===========================================================================
854  * Send one empty static block to give enough lookahead for inflate.
855  * This takes 10 bits, of which 7 may remain in the bit buffer.
856  * The current inflate code requires 9 bits of lookahead. If the
857  * last two codes for the previous block (real code plus EOB) were coded
858  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
859  * the last real code. In this case we send two empty static blocks instead
860  * of one. (There are no problems if the previous block is stored or fixed.)
861  * To simplify the code, we assume the worst case of last real code encoded
862  * on one bit only.
863  */
865 {
866  send_bits(s, STATIC_TREES<<1, 3);
868 #ifdef DEBUG
869  s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
870 #endif
871  bi_flush(s);
872  /* Of the 10 bits for the empty block, we have already sent
873  * (10 - bi_valid) bits. The lookahead for the last real code (before
874  * the EOB of the previous block) was thus at least one plus the length
875  * of the EOB plus what we have just sent of the empty static block.
876  */
877  if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
878  send_bits(s, STATIC_TREES<<1, 3);
880 #ifdef DEBUG
881  s->compressed_len += 10L;
882 #endif
883  bi_flush(s);
884  }
885  s->last_eob_len = 7;
886 }
887 
888 /* ===========================================================================
889  * Determine the best encoding for the current block: dynamic trees, static
890  * trees or store, and output the encoded block to the zip file.
891  */
892 void _tr_flush_block(deflate_state *s, charf *buf, ulg stored_len, int eof)
893 {
894  ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
895  int max_blindex = 0; /* index of last bit length code of non zero freq */
896 
897  /* Build the Huffman trees unless a stored block is forced */
898  if (s->level > 0) {
899 
900  /* Check if the file is ascii or binary */
901  if (s->strm->data_type == Z_UNKNOWN) set_data_type(s);
902 
903  /* Construct the literal and distance trees */
904  build_tree(s, (tree_desc *)(&(s->l_desc)));
905  Tracev((stderr, (char*)"\nlit data: dyn %ld, stat %ld", s->opt_len,
906  s->static_len));
907 
908  build_tree(s, (tree_desc *)(&(s->d_desc)));
909  Tracev((stderr, (char*)"\ndist data: dyn %ld, stat %ld", s->opt_len,
910  s->static_len));
911  /* At this point, opt_len and static_len are the total bit lengths of
912  * the compressed block data, excluding the tree representations.
913  */
914 
915  /* Build the bit length tree for the above two trees, and get the index
916  * in bl_order of the last bit length code to send.
917  */
918  max_blindex = build_bl_tree(s);
919 
920  /* Determine the best encoding. Compute the block lengths in bytes. */
921  opt_lenb = (s->opt_len+3+7)>>3;
922  static_lenb = (s->static_len+3+7)>>3;
923 
924  Tracev((stderr, (char*)"\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
925  opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
926  s->last_lit));
927 
928  if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
929 
930  } else {
931  Assert(buf != (char*)0, (char*)"lost buf");
932  opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
933  }
934 
935 #ifdef FORCE_STORED
936  if (buf != (char*)0) { /* force stored block */
937 #else
938  if (stored_len+4 <= opt_lenb && buf != (char*)0) {
939  /* 4: two words for the lengths */
940 #endif
941  /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
942  * Otherwise we can't have processed more than WSIZE input bytes since
943  * the last block flush, because compression would have been
944  * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
945  * transform a block into a stored block.
946  */
947  _tr_stored_block(s, buf, stored_len, eof);
948 
949 #ifdef FORCE_STATIC
950  } else if (static_lenb >= 0) { /* force static trees */
951 #else
952  } else if (static_lenb == opt_lenb) {
953 #endif
954  send_bits(s, (STATIC_TREES<<1)+eof, 3);
956 #ifdef DEBUG
957  s->compressed_len += 3 + s->static_len;
958 #endif
959  } else {
960  send_bits(s, (DYN_TREES<<1)+eof, 3);
962  max_blindex+1);
964 #ifdef DEBUG
965  s->compressed_len += 3 + s->opt_len;
966 #endif
967  }
968  Assert (s->compressed_len == s->bits_sent, (char*)"bad compressed size");
969  /* The above check is made mod 2^32, for files larger than 512 MB
970  * and uLong implemented on 32 bits.
971  */
972  init_block(s);
973 
974  if (eof) {
975  bi_windup(s);
976 #ifdef DEBUG
977  s->compressed_len += 7; /* align on byte boundary */
978 #endif
979  }
980  Tracev((stderr,(char*)"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
981  s->compressed_len-7*eof));
982 }
983 
984 /* ===========================================================================
985  * Save the match info and tally the frequency counts. Return true if
986  * the current block must be flushed.
987  */
988 int _tr_tally (deflate_state *s, unsigned dist, unsigned lc)
989 {
990  s->d_buf[s->last_lit] = (ush)dist;
991  s->l_buf[s->last_lit++] = (uch)lc;
992  if (dist == 0) {
993  /* lc is the unmatched char */
994  s->dyn_ltree[lc].Freq++;
995  } else {
996  s->matches++;
997  /* Here, lc is the match length - MIN_MATCH */
998  dist--; /* dist = match distance - 1 */
999  Assert((ush)dist < (ush)MAX_DIST(s) &&
1000  (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1001  (ush)d_code(dist) < (ush)D_CODES, (char*)"_tr_tally: bad match");
1002 
1003  s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1004  s->dyn_dtree[d_code(dist)].Freq++;
1005  }
1006 
1007 #ifdef TRUNCATE_BLOCK
1008  /* Try to guess if it is profitable to stop the current block here */
1009  if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1010  /* Compute an upper bound for the compressed length */
1011  ulg out_length = (ulg)s->last_lit*8L;
1012  ulg in_length = (ulg)((long)s->strstart - s->block_start);
1013  int dcode;
1014  for (dcode = 0; dcode < D_CODES; dcode++) {
1015  out_length += (ulg)s->dyn_dtree[dcode].Freq *
1016  (5L+extra_dbits[dcode]);
1017  }
1018  out_length >>= 3;
1019  Tracev((stderr,(char*)"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1020  s->last_lit, in_length, out_length,
1021  100L - out_length*100L/in_length));
1022  if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1023  }
1024 #endif
1025  return (s->last_lit == s->lit_bufsize-1);
1026  /* We avoid equality with lit_bufsize because of wraparound at 64K
1027  * on 16 bit machines and because stored blocks are restricted to
1028  * 64K-1 bytes.
1029  */
1030 }
1031 
1032 /* ===========================================================================
1033  * Send the block data compressed using the given Huffman trees
1034  */
1036 {
1037  unsigned dist; /* distance of matched string */
1038  int lc; /* match length or unmatched char (if dist == 0) */
1039  unsigned lx = 0; /* running index in l_buf */
1040  unsigned code; /* the code to send */
1041  int extra; /* number of extra bits to send */
1042 
1043  if (s->last_lit != 0) do {
1044  dist = s->d_buf[lx];
1045  lc = s->l_buf[lx++];
1046  if (dist == 0) {
1047  send_code(s, lc, ltree); /* send a literal byte */
1048  Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1049  } else {
1050  /* Here, lc is the match length - MIN_MATCH */
1051  code = _length_code[lc];
1052  send_code(s, code+LITERALS+1, ltree); /* send the length code */
1053  extra = extra_lbits[code];
1054  if (extra != 0) {
1055  lc -= base_length[code];
1056  send_bits(s, lc, extra); /* send the extra length bits */
1057  }
1058  dist--; /* dist is now the match distance - 1 */
1059  code = d_code(dist);
1060  Assert (code < D_CODES, (char*)"bad d_code");
1061 
1062  send_code(s, code, dtree); /* send the distance code */
1063  extra = extra_dbits[code];
1064  if (extra != 0) {
1065  dist -= base_dist[code];
1066  send_bits(s, dist, extra); /* send the extra distance bits */
1067  }
1068  } /* literal or match pair ? */
1069 
1070  /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1071  Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1072  (char*)"pendingBuf overflow");
1073 
1074  } while (lx < s->last_lit);
1075 
1076  send_code(s, END_BLOCK, ltree);
1077  s->last_eob_len = ltree[END_BLOCK].Len;
1078 }
1079 
1080 /* ===========================================================================
1081  * Set the data type to ASCII or BINARY, using a crude approximation:
1082  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
1083  * IN assertion: the fields freq of dyn_ltree are set and the total of all
1084  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
1085  */
1087 {
1088  int n = 0;
1089  unsigned ascii_freq = 0;
1090  unsigned bin_freq = 0;
1091  while (n < 7) bin_freq += s->dyn_ltree[n++].Freq;
1092  while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq;
1093  while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
1094  s->strm->data_type = bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII;
1095 }
1096 
1097 /* ===========================================================================
1098  * Reverse the first len bits of a code, using straightforward code (a faster
1099  * method would use a table)
1100  * IN assertion: 1 <= len <= 15
1101  */
1102 local unsigned bi_reverse(unsigned code, int len)
1103 {
1104  register unsigned res = 0;
1105  do {
1106  res |= code & 1;
1107  code >>= 1, res <<= 1;
1108  } while (--len > 0);
1109  return res >> 1;
1110 }
1111 
1112 /* ===========================================================================
1113  * Flush the bit buffer, keeping at most 7 bits in it.
1114  */
1116 {
1117  if (s->bi_valid == 16) {
1118  put_short(s, s->bi_buf);
1119  s->bi_buf = 0;
1120  s->bi_valid = 0;
1121  } else if (s->bi_valid >= 8) {
1122  put_byte(s, (Byte)s->bi_buf);
1123  s->bi_buf >>= 8;
1124  s->bi_valid -= 8;
1125  }
1126 }
1127 
1128 /* ===========================================================================
1129  * Flush the bit buffer and align the output on a byte boundary
1130  */
1132 {
1133  if (s->bi_valid > 8) {
1134  put_short(s, s->bi_buf);
1135  } else if (s->bi_valid > 0) {
1136  put_byte(s, (Byte)s->bi_buf);
1137  }
1138  s->bi_buf = 0;
1139  s->bi_valid = 0;
1140 #ifdef DEBUG
1141  s->bits_sent = (s->bits_sent+7) & ~7;
1142 #endif
1143 }
1144 
1145 /* ===========================================================================
1146  * Copy a stored block, storing first the length and its
1147  * one's complement if requested.
1148  */
1149 local void copy_block(deflate_state *s, charf *buf, unsigned len, int header)
1150 {
1151  bi_windup(s); /* align on byte boundary */
1152  s->last_eob_len = 8; /* enough lookahead for inflate */
1153 
1154  if (header) {
1155  put_short(s, (ush)len);
1156  put_short(s, (ush)~len);
1157 #ifdef DEBUG
1158  s->bits_sent += 2*16;
1159 #endif
1160  }
1161 #ifdef DEBUG
1162  s->bits_sent += (ulg)len<<3;
1163 #endif
1164  while (len--) {
1165  put_byte(s, *buf++);
1166  }
1167 }