Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
RE02DetectorConstruction.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
28 //
29 //
30 // $Id$
31 //
32 
34 
35 #include "G4PSEnergyDeposit3D.hh"
36 #include "G4PSNofStep3D.hh"
37 #include "G4PSCellFlux3D.hh"
38 #include "G4PSPassageCellFlux3D.hh"
39 #include "G4PSFlatSurfaceFlux3D.hh"
41 
43 #include "G4SDParticleFilter.hh"
44 #include "G4SDChargedFilter.hh"
45 
46 #include "G4NistManager.hh"
47 #include "G4Material.hh"
48 #include "G4Box.hh"
49 #include "G4LogicalVolume.hh"
50 #include "G4PVPlacement.hh"
51 #include "G4SDManager.hh"
52 
53 #include "G4PVParameterised.hh"
55 
56 #include "G4VisAttributes.hh"
57 #include "G4Colour.hh"
58 
59 #include "G4SystemOfUnits.hh"
60 #include "G4ios.hh"
61 
62 //=======================================================================
63 // RE02DetectorConstruction
64 //
65 // (Description)
66 //
67 // Detector construction for example RE02.
68 //
69 // [Geometry]
70 // The world volume is defined as 200 cm x 200 cm x 200 cm box with Air.
71 // Water phantom is defined as 200 mm x 200 mm x 400 mm box with Water.
72 // The water phantom is divided into 100 segments in x,y plane using
73 // replication,
74 // and then divided into 200 segments perpendicular to z axis using nested
75 // parameterised volume.
76 // These values are defined at constructor,
77 // e.g. the size of water phantom (fPhantomSize), and number of segmentation
78 // of water phantom (fNx, fNy, fNz).
79 //
80 // By default, lead plates are inserted into the position of even order
81 // segments.
82 // NIST database is used for materials.
83 //
84 //
85 // [Scorer]
86 // Assignment of G4MultiFunctionalDetector and G4PrimitiveScorer
87 // is demonstrated in this example.
88 // -------------------------------------------------
89 // The collection names of defined Primitives are
90 // 0 PhantomSD/totalEDep
91 // 1 PhantomSD/protonEDep
92 // 2 PhantomSD/protonNStep
93 // 3 PhantomSD/chargedPassCellFlux
94 // 4 PhantomSD/chargedCellFlux
95 // 5 PhantomSD/chargedSurfFlux
96 // 6 PhantomSD/gammaSurfCurr000
97 // 7 PhantomSD/gammaSurfCurr001
98 // 9 PhantomSD/gammaSurdCurr002
99 // 10 PhantomSD/gammaSurdCurr003
100 // -------------------------------------------------
101 // Please see README for detail description.
102 //
103 //=======================================================================
104 
105 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
107 {
108  // Default size of water phantom,and segmentation.
109  fPhantomSize.setX(200.*mm);
110  fPhantomSize.setY(200.*mm);
111  fPhantomSize.setZ(400.*mm);
112  fNx = fNy = fNz = 100;
113  fInsertLead = TRUE;
114 }
115 
116 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
118 {;}
119 
120 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
122 {
123  //=====================
124  // Material Definitions
125  //=====================
126  //
127  //-------- NIST Materials ----------------------------------------------------
128  // Material Information imported from NIST database.
129  //
131  G4Material* air = NISTman->FindOrBuildMaterial("G4_AIR");
132  G4Material* water = NISTman->FindOrBuildMaterial("G4_WATER");
133  G4Material* lead = NISTman->FindOrBuildMaterial("G4_Pb");
134 
135  //
136  // Print all the materials defined.
137  G4cout << G4endl << "The materials defined are : " << G4endl << G4endl;
138  G4cout << *(G4Material::GetMaterialTable()) << G4endl;
139 
140  //============================================================================
141  // Definitions of Solids, Logical Volumes, Physical Volumes
142  //============================================================================
143 
144  //-------------
145  // World Volume
146  //-------------
147 
148  G4ThreeVector worldSize = G4ThreeVector(200*cm, 200*cm, 200*cm);
149 
150  G4Box * solidWorld
151  = new G4Box("world", worldSize.x()/2., worldSize.y()/2., worldSize.z()/2.);
152  G4LogicalVolume * logicWorld
153  = new G4LogicalVolume(solidWorld, air, "World", 0, 0, 0);
154 
155  //
156  // Must place the World Physical volume unrotated at (0,0,0).
157  G4VPhysicalVolume * physiWorld
158  = new G4PVPlacement(0, // no rotation
159  G4ThreeVector(), // at (0,0,0)
160  logicWorld, // its logical volume
161  "World", // its name
162  0, // its mother volume
163  false, // no boolean operations
164  0); // copy number
165 
166  //---------------
167  // Water Phantom
168  //---------------
169 
170  //................................
171  // Mother Volume of Water Phantom
172  //................................
173 
174  //-- Default size of water phantom is defined at constructor.
175  G4ThreeVector phantomSize = fPhantomSize;
176 
177  G4Box * solidPhantom
178  = new G4Box("phantom",
179  phantomSize.x()/2., phantomSize.y()/2., phantomSize.z()/2.);
180  G4LogicalVolume * logicPhantom
181  = new G4LogicalVolume(solidPhantom, water, "Phantom", 0, 0, 0);
182 
183  G4RotationMatrix* rot = new G4RotationMatrix();
184  //rot->rotateY(30.*deg);
185  G4ThreeVector positionPhantom;
186  //G4VPhysicalVolume * physiPhantom =
187  new G4PVPlacement(rot, // no rotation
188  positionPhantom, // at (x,y,z)
189  logicPhantom, // its logical volume
190  "Phantom", // its name
191  logicWorld, // its mother volume
192  false, // no boolean operations
193  0); // copy number
194 
195  //..............................................
196  // Phantom segmentation using Parameterisation
197  //..............................................
198  //
199  G4cout << "<-- RE02DetectorConstruction::Construct-------" <<G4endl;
200  G4cout << " Water Phantom Size " << fPhantomSize/mm << G4endl;
201  G4cout << " Segmentation ("<< fNx<<","<<fNy<<","<<fNz<<")"<< G4endl;
202  G4cout << " Lead plate at even copy # (0-False,1-True): " << IsLeadSegment()
203  << G4endl;
204  G4cout << "<---------------------------------------------"<< G4endl;
205  // Number of segmentation.
206  // - Default number of segmentation is defined at constructor.
207  G4int nxCells = fNx;
208  G4int nyCells = fNy;
209  G4int nzCells = fNz;
210 
211  G4ThreeVector sensSize;
212  sensSize.setX(phantomSize.x()/(G4double)nxCells);
213  sensSize.setY(phantomSize.y()/(G4double)nyCells);
214  sensSize.setZ(phantomSize.z()/(G4double)nzCells);
215  // i.e Voxel size will be 2.0 x 2.0 x 2.0 mm3 cube by default.
216  //
217 
218  // Replication of Water Phantom Volume.
219  // Y Slice
220  G4String yRepName("RepY");
221  G4VSolid* solYRep =
222  new G4Box(yRepName,phantomSize.x()/2.,sensSize.y()/2.,phantomSize.z()/2.);
223  G4LogicalVolume* logYRep =
224  new G4LogicalVolume(solYRep,water,yRepName);
225  //G4PVReplica* yReplica =
226  new G4PVReplica(yRepName,logYRep,logicPhantom,kYAxis,fNy,sensSize.y());
227  // X Slice
228  G4String xRepName("RepX");
229  G4VSolid* solXRep =
230  new G4Box(xRepName,sensSize.x()/2.,sensSize.y()/2.,phantomSize.z()/2.);
231  G4LogicalVolume* logXRep =
232  new G4LogicalVolume(solXRep,water,xRepName);
233  //G4PVReplica* xReplica =
234  new G4PVReplica(xRepName,logXRep,logYRep,kXAxis,fNx,sensSize.x());
235 
236  //
237  //..................................
238  // Voxel solid and logical volumes
239  //..................................
240  // Z Slice
241  G4String zVoxName("phantomSens");
242  G4VSolid* solVoxel =
243  new G4Box(zVoxName,sensSize.x()/2.,sensSize.y()/2.,sensSize.z()/2.);
244  G4LogicalVolume* logicPhantomSens = new G4LogicalVolume(solVoxel,water,zVoxName);
245  //
246  //
247  std::vector<G4Material*> phantomMat(2,water);
248  if ( IsLeadSegment() ) phantomMat[1]=lead;
249  //
250  // Parameterisation for transformation of voxels.
251  // (voxel size is fixed in this example.
252  // e.g. nested parameterisation handles material and transfomation of voxels.)
254  = new RE02NestedPhantomParameterisation(sensSize/2.,nzCells,phantomMat);
255  //G4VPhysicalVolume * physiPhantomSens =
256  new G4PVParameterised("PhantomSens", // their name
257  logicPhantomSens, // their logical volume
258  logXRep, // Mother logical volume
259  kUndefined, // Are placed along this axis
260  nzCells, // Number of cells
261  paramPhantom); // Parameterisation.
262  // Optimization flag is avaiable for,
263  // kUndefined, kXAxis, kYAxis, kZAxis.
264  //
265 
266  //================================================
267  // Sensitive detectors : MultiFunctionalDetector
268  //================================================
269  //
270  // Sensitive Detector Manager.
272  //
273  // Sensitive Detector Name
274  G4String phantomSDname = "PhantomSD";
275 
276  //------------------------
277  // MultiFunctionalDetector
278  //------------------------
279  //
280  // Define MultiFunctionalDetector with name.
282  = new G4MultiFunctionalDetector(phantomSDname);
283  pSDman->AddNewDetector( mFDet ); // Register SD to SDManager.
284  logicPhantomSens->SetSensitiveDetector(mFDet); // Assign SD to the logical volume.
285 
286  //---------------------------------------
287  // SDFilter : Sensitive Detector Filters
288  //---------------------------------------
289  //
290  // Particle Filter for Primitive Scorer with filter name(fltName)
291  // and particle name(particleName),
292  // or particle names are given by add("particle name"); method.
293  //
294  G4String fltName,particleName;
295  //
296  //-- proton filter
297  G4SDParticleFilter* protonFilter =
298  new G4SDParticleFilter(fltName="protonFilter", particleName="proton");
299  //
300  //-- electron filter
301  G4SDParticleFilter* electronFilter =
302  new G4SDParticleFilter(fltName="electronFilter");
303  electronFilter->add(particleName="e+"); // accept electrons.
304  electronFilter->add(particleName="e-"); // accept positorons.
305  //
306  //-- charged particle filter
307  G4SDChargedFilter* chargedFilter =
308  new G4SDChargedFilter(fltName="chargedFilter");
309 
310  //------------------------
311  // PS : Primitive Scorers
312  //------------------------
313  // Primitive Scorers are used with SDFilters according to your purpose.
314  //
315  //
316  //-- Primitive Scorer for Energy Deposit.
317  // Total, by protons, by electrons.
318  G4String psName;
319  G4PSEnergyDeposit3D * scorer0 = new G4PSEnergyDeposit3D(psName="totalEDep",
320  fNx,fNy,fNz);
321  G4PSEnergyDeposit3D * scorer1 = new G4PSEnergyDeposit3D(psName="protonEDep",
322  fNx,fNy,fNz);
323  scorer1->SetFilter(protonFilter);
324 
325  //
326  //-- Number of Steps for protons
327  G4PSNofStep3D * scorer2 =
328  new G4PSNofStep3D(psName="protonNStep",fNx,fNy,fNz);
329  scorer2->SetFilter(protonFilter);
330 
331  //
332  //-- CellFlux for charged particles
333  G4PSPassageCellFlux3D * scorer3 =
334  new G4PSPassageCellFlux3D(psName="chargedPassCellFlux", fNx,fNy,fNz);
335  G4PSCellFlux3D * scorer4 =
336  new G4PSCellFlux3D(psName="chargedCellFlux", fNx,fNy,fNz);
337  G4PSFlatSurfaceFlux3D * scorer5 =
338  new G4PSFlatSurfaceFlux3D(psName="chargedSurfFlux", fFlux_InOut,fNx,fNy,fNz);
339  scorer3->SetFilter(chargedFilter);
340  scorer4->SetFilter(chargedFilter);
341  scorer5->SetFilter(chargedFilter);
342 
343  //
344  //------------------------------------------------------------
345  // Register primitive scorers to MultiFunctionalDetector
346  //------------------------------------------------------------
347  mFDet->RegisterPrimitive(scorer0);
348  mFDet->RegisterPrimitive(scorer1);
349  mFDet->RegisterPrimitive(scorer2);
350  mFDet->RegisterPrimitive(scorer3);
351  mFDet->RegisterPrimitive(scorer4);
352  mFDet->RegisterPrimitive(scorer5);
353 
354  //========================
355  // More additional Primitive Scoreres
356  //========================
357  //
358  //--- Surface Current for gamma with energy bin.
359  // This example creates four primitive scorers.
360  // 4 bins with energy --- Primitive Scorer Name
361  // 1. to 10 KeV, gammaSurfCurr000
362  // 10 keV to 100 KeV, gammaSurfCurr001
363  // 100 keV to 1 MeV, gammaSurfCurr002
364  // 1 MeV to 10 MeV. gammaSurfCurr003
365  //
366  char name[17];
367  for ( G4int i = 0; i < 4; i++){
368  std::sprintf(name,"gammaSurfCurr%03d",i);
369  G4String psgName(name);
370  G4double kmin = std::pow(10.,(G4double)i)*keV;
371  G4double kmax = std::pow(10.,(G4double)(i+1))*keV;
372  //-- Particle with kinetic energy filter.
373  G4SDParticleWithEnergyFilter* pkinEFilter =
374  new G4SDParticleWithEnergyFilter(fltName="gammaE filter",kmin,kmax);
375  pkinEFilter->add("gamma"); // Accept only gamma.
376  pkinEFilter->show(); // Show accepting condition to stdout.
377  //-- Surface Current Scorer which scores number of tracks in unit area.
378  G4PSFlatSurfaceCurrent3D * scorer =
379  new G4PSFlatSurfaceCurrent3D(psgName,fCurrent_InOut,fNx,fNy,fNz);
380  scorer->SetFilter(pkinEFilter); // Assign filter.
381  mFDet->RegisterPrimitive(scorer); // Register it to MultiFunctionalDetector.
382  }
383  //
384 
385  //===============================
386  // Visualization attributes
387  //===============================
388 
389  G4VisAttributes* boxVisAtt= new G4VisAttributes(G4Colour(1.0,1.0,1.0));
390  logicWorld ->SetVisAttributes(boxVisAtt);
391  //logicWorld->SetVisAttributes(G4VisAttributes::Invisible);
392 
393  // Mother volume of WaterPhantom
394  G4VisAttributes* phantomVisAtt = new G4VisAttributes(G4Colour(1.0,1.0,0.0));
395  logicPhantom->SetVisAttributes(phantomVisAtt);
396 
397  // Replica
398  G4VisAttributes* yRepVisAtt = new G4VisAttributes(G4Colour(0.0,1.0,0.0));
399  logYRep->SetVisAttributes(yRepVisAtt);
400  G4VisAttributes* xRepVisAtt = new G4VisAttributes(G4Colour(0.0,1.0,0.0));
401  logXRep->SetVisAttributes(xRepVisAtt);
402 
403  // Skip the visualization for those voxels.
404  logicPhantomSens->SetVisAttributes(G4VisAttributes::Invisible);
405 
406 
407  return physiWorld;
408 }
409