Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4VQCrossSection.hh
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id$
28 //
29 //
30 // GEANT4 virtual class: G4VQCrossSection -- header file
31 // M.V. Kossov, CERN-ITEP(Moscow), 4-FEB-2004
32 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 27-Nov-04
33 //
34 // Short description: this G4 virtual class is made for the cross section
35 // classes of the CHIPS model, which calculate the cross section for the
36 // particular Element (virtual GetCrossSection member function). Each of the
37 // CHIPS cross section classes creates its own Dynamic Associative Memory
38 // Data Base (DAMDB) for the already used isotopes. For all of them thay use the
39 // same algorithm. Common member functions of this algorithm can be in this
40 // basic virtual class. Any CHIPS cross section class MUST inherit from this virtual
41 // G4VQCrossSection class. In the G4QCollision class the general G4VQCrossSection*
42 // pointer is connected to this or that CHIPS cross section class (depending on the
43 // projectile particle), so each of the CHIPS cross section class must be
44 // an evolving singletone. The singletone nature can not be realized in the
45 // virtual class. So each derived CS class must have
46 // static G4VQCrossSection* GetPointer(); // Gives a pointer to the singletone
47 // static function, which is defined in the *.cc file as
48 // // Returns Pointer to the G4VQCrossSection class
49 // G4VQCrossSection* G4VQCrossSection::GetPointer()
50 // {
51 // static G4QXCrossSection theCrossSection; //***Static body of the Cross Section***
52 // return &theCrossSection;
53 // }
54 // the line
55 // //virtual static G4VQCrossSection* GetPointer(); // Gives a pointer to the singletone
56 // Reminds about this necesity, but in C++ the virtual static function can not be
57 // realised, so the static function can not be realised in the interface. Developers
58 // must take care of this themselves because this member fuction is called to get a pointer
59 // to the singletone in the G4QCollision class. So there is an agreement to
60 // make a separate CS class for each projectile particle, e.g. while the (pi-)d
61 // and (pi+)d (as well as [n,z] and [z,n]) cross sections) are almost equal,
62 // they must be calculated in different classes: G4QPiMinusCrossSection and
63 // G4QPiPlusCrossSections. For the ion-nuclear cross sections there should exist only
64 // one G4QIonCrossSection class with a huge (#0f isotopes times #of already produced
65 // ions) DAMDB or a general analitic formula with parameters. --- December 2004 ---
66 // -----------------------------------------------------------------------
67 // At present (25.11.04) for the test purposes this virtual class is created
68 // for ohly G4QPhotonCrossSection, G4QElectronCrossSection, G4QMuonCrossSection,
69 // G4QTauCrossSection and G4QProtonCrossSection (only for pp collisions now).
70 // ****************************************************************************************
71 // ********* This HEADER is temporary moved from the photolepton_hadron directory *********
72 // ******* DO NOT MAKE ANY CHANGE! With time it'll move back to photolepton...(M.K.) ******
73 // ****************************************************************************************
74 // Short description: a basic class for all CHIPS reaction cross-sections.
75 // -----------------------------------------------------------------------
76 
77 #ifndef G4VQCrossSection_h
78 #define G4VQCrossSection_h 1
79 
80 #include "G4ParticleTable.hh"
81 #include "G4NucleiProperties.hh"
82 #include <vector>
83 #include "Randomize.hh"
84 
86 {
87 protected:
88 
89  G4VQCrossSection() {;} // for each particle a separate instance of G4QCollision should be
90  // used (and inside use a separate instance of G4Q*CrossSection)
91 
92 public:
93  virtual ~G4VQCrossSection() {;}// for each particle separate instance of G4QXCrossSection
94  //@@ can be improved in future)// should be used and inside a separate istance of CS's
95  // Set the new tolerance (abs(p_old/p_new-1)<tolerance)
96  static void setTolerance(G4double tol){tolerance=tol;}// Set NewTolerance for SameCrosSec
97 
98  // At present momentum (pMom) must be in GeV (@@ Units)
100  {return G4double(pPDG);}
101 
102  virtual G4double ThresholdEnergy(G4int Z, G4int N, G4int PDG=0); // Gives 0 by default
103 
104  // Define in the derived class, F=0 - create AMDB, F=-1 - read AMDB, F=1 - update AMDB
105  virtual G4double CalculateCrossSection(G4bool CS, G4int F, G4int I, G4int PDG, G4int tgZ,
106  G4int tgN, G4double pMom)=0;//*** PURE VIRTUAL ***
107 
108  virtual G4double GetLastTOTCS(); // LastCalculated total cross-section (total elastic)
109 
110  virtual G4double GetLastQELCS(); // LastCalculated quasielastic cross-section (quasifree)
111 
112  virtual G4double GetDirectPart(G4double Q2); // DirectInteraction with QuarkPartons (nuA)
113 
114  virtual G4double GetNPartons(G4double Q2); // #ofQuarkPartons in nonPerturbatPhaseSp(nuA)
115 
116  // Subroutines for the t-chanel processes with a leader (DIS, Elastic, Quasielastic etc.)
117 
118  virtual G4double GetExchangeEnergy(); // Returns energy of the t-chanel particle (gam,pi)
119 
120  virtual G4double GetExchangeT(G4int tZ, G4int tN, G4int pPDG); // -t=Q2 for hadronic
121 
122  virtual G4double GetSlope(G4int tZ, G4int tN, G4int pPDG); // B-slope of the maim maximum
123 
124  virtual G4double GetHMaxT(); // max(-t=Q2)/2 for hadronic (MeV^2)
125 
126  virtual G4double GetExchangeQ2(G4double nu=0); // Q2 for lepto-nuclear reactions
127 
128  virtual G4double GetVirtualFactor(G4double nu, G4double Q2); // ReductionFactor (leptA)
129 
130  virtual G4double GetQEL_ExchangeQ2(); // Get randomized Q2 for quasi-elastic scattering
131 
132  virtual G4double GetNQE_ExchangeQ2(); // Get randomized Q2 for non quasi-elastic scat.
133 
134  virtual G4int GetExchangePDGCode(); // PDGCode of the Exchange Particle (Pi0 by default)
135 
136  // Body: Basic Parameters of DAMDB (each derived class can add it's own values)
137  // -----------------------------------------------------------------------------
138  // The basic scheme of the DAMDB coveres the cross section for isotopes with fixed
139  // Z (lastZ - number of protons) and N (lastN - number of neutrons) from the
140  // Threshold momentum (TH) up to infinity. The cross section is first (Tab.1)
141  // tabulated from the threshold till the boundary momentum (BP). The Tab.1 is
142  // the function of the momentum (p) with the N1 elements. The N1 elements can be
143  // not all different from zero. The first non-zero element is F1, the last non-zero
144  // element is L1. If TH#0 the Tab.1 can be skipped. It is defined by N1=F1=L1=0 and
145  // BP=TH. The Tab.1 is the function of the ln(p) with N2 elements (F2 is the first
146  // non-zero element, L2 is the last non-zero element) from BP up tp MP. Both Tab.1
147  // and Tab.2 are calculated when the projectile of the class meet the corresponding
148  // ion. After that the tables are stored in the DAMDB for the fast calculations. To
149  // avoid a complete calculation of the tables in the low energy calculation case,
150  // the lastP momentum is used. The tables are calculated only till the momentum,
151  // which already appeared in the simulation for this projectile and this isotope.
152  // If the momentum above MP appeared, then the extrapolation function is calculated.
153  // So, if lastP>MP it means that the cross section is defined for all energies above
154  // TH. All parameters and pointers to arrays MUST be stored (F=0), updated (F=1) and
155  // retrieved (F=-1) by the derived class in the CalculateCrossSection(F,I,N,Z,P)
156  // function. The parameters are used for the immediate result: if the cross section is
157  // calculated for the same Z, N, and fabs(p-lastP)/lastP<.001 (? - a parameter), the same
158  // cross section (lastCS) is returned, if p<lastTH, then the 0 cross section is returned.
159  // It helps to avoid double counting. The derived class can have only the approximation
160  // functions, but such class is too slow, as it calculates the arythmetic equations each
161  // time, when it is necessary to get a new cross section. So it is reasonable to
162  // precalculate the tables, store them in memory, remember the pointers to these
163  // functions and just interpolate them in the range of the most frequent energies (use
164  // a LinearFit inline function of this virtual class for that). Starting some high
165  // momentum (PM) the functional calculations are unavoidable, but fortunately they are
166  // not frequent. In case of the ion-nuclear cross section the functional approach can
167  // be reasonable, because tabulated cross-sections demand too much memory.
168  //
169  // -----------------------------------------------------------------------------
170 protected:
172 
174 
175  static G4double tolerance;// relative tolerance in momentum to get old CroSec
176 };
177 
178 #endif