Geant4
9.6.p02
Main Page
Related Pages
Modules
Namespaces
Classes
Files
File List
File Members
All
Classes
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Enumerator
Friends
Macros
Groups
Pages
geant4_9_6_p02
source
processes
hadronic
models
chiral_inv_phase_space
cross_sections
include
G4VQCrossSection.hh
Go to the documentation of this file.
1
//
2
// ********************************************************************
3
// * License and Disclaimer *
4
// * *
5
// * The Geant4 software is copyright of the Copyright Holders of *
6
// * the Geant4 Collaboration. It is provided under the terms and *
7
// * conditions of the Geant4 Software License, included in the file *
8
// * LICENSE and available at http://cern.ch/geant4/license . These *
9
// * include a list of copyright holders. *
10
// * *
11
// * Neither the authors of this software system, nor their employing *
12
// * institutes,nor the agencies providing financial support for this *
13
// * work make any representation or warranty, express or implied, *
14
// * regarding this software system or assume any liability for its *
15
// * use. Please see the license in the file LICENSE and URL above *
16
// * for the full disclaimer and the limitation of liability. *
17
// * *
18
// * This code implementation is the result of the scientific and *
19
// * technical work of the GEANT4 collaboration. *
20
// * By using, copying, modifying or distributing the software (or *
21
// * any work based on the software) you agree to acknowledge its *
22
// * use in resulting scientific publications, and indicate your *
23
// * acceptance of all terms of the Geant4 Software license. *
24
// ********************************************************************
25
//
26
//
27
// $Id$
28
//
29
//
30
// GEANT4 virtual class: G4VQCrossSection -- header file
31
// M.V. Kossov, CERN-ITEP(Moscow), 4-FEB-2004
32
// The last update: M.V. Kossov, CERN/ITEP (Moscow) 27-Nov-04
33
//
34
// Short description: this G4 virtual class is made for the cross section
35
// classes of the CHIPS model, which calculate the cross section for the
36
// particular Element (virtual GetCrossSection member function). Each of the
37
// CHIPS cross section classes creates its own Dynamic Associative Memory
38
// Data Base (DAMDB) for the already used isotopes. For all of them thay use the
39
// same algorithm. Common member functions of this algorithm can be in this
40
// basic virtual class. Any CHIPS cross section class MUST inherit from this virtual
41
// G4VQCrossSection class. In the G4QCollision class the general G4VQCrossSection*
42
// pointer is connected to this or that CHIPS cross section class (depending on the
43
// projectile particle), so each of the CHIPS cross section class must be
44
// an evolving singletone. The singletone nature can not be realized in the
45
// virtual class. So each derived CS class must have
46
// static G4VQCrossSection* GetPointer(); // Gives a pointer to the singletone
47
// static function, which is defined in the *.cc file as
48
// // Returns Pointer to the G4VQCrossSection class
49
// G4VQCrossSection* G4VQCrossSection::GetPointer()
50
// {
51
// static G4QXCrossSection theCrossSection; //***Static body of the Cross Section***
52
// return &theCrossSection;
53
// }
54
// the line
55
// //virtual static G4VQCrossSection* GetPointer(); // Gives a pointer to the singletone
56
// Reminds about this necesity, but in C++ the virtual static function can not be
57
// realised, so the static function can not be realised in the interface. Developers
58
// must take care of this themselves because this member fuction is called to get a pointer
59
// to the singletone in the G4QCollision class. So there is an agreement to
60
// make a separate CS class for each projectile particle, e.g. while the (pi-)d
61
// and (pi+)d (as well as [n,z] and [z,n]) cross sections) are almost equal,
62
// they must be calculated in different classes: G4QPiMinusCrossSection and
63
// G4QPiPlusCrossSections. For the ion-nuclear cross sections there should exist only
64
// one G4QIonCrossSection class with a huge (#0f isotopes times #of already produced
65
// ions) DAMDB or a general analitic formula with parameters. --- December 2004 ---
66
// -----------------------------------------------------------------------
67
// At present (25.11.04) for the test purposes this virtual class is created
68
// for ohly G4QPhotonCrossSection, G4QElectronCrossSection, G4QMuonCrossSection,
69
// G4QTauCrossSection and G4QProtonCrossSection (only for pp collisions now).
70
// ****************************************************************************************
71
// ********* This HEADER is temporary moved from the photolepton_hadron directory *********
72
// ******* DO NOT MAKE ANY CHANGE! With time it'll move back to photolepton...(M.K.) ******
73
// ****************************************************************************************
74
// Short description: a basic class for all CHIPS reaction cross-sections.
75
// -----------------------------------------------------------------------
76
77
#ifndef G4VQCrossSection_h
78
#define G4VQCrossSection_h 1
79
80
#include "
G4ParticleTable.hh
"
81
#include "
G4NucleiProperties.hh
"
82
#include <vector>
83
#include "
Randomize.hh
"
84
85
class
G4VQCrossSection
86
{
87
protected
:
88
89
G4VQCrossSection
() {;}
// for each particle a separate instance of G4QCollision should be
90
// used (and inside use a separate instance of G4Q*CrossSection)
91
92
public
:
93
virtual
~G4VQCrossSection
() {;}
// for each particle separate instance of G4QXCrossSection
94
//@@ can be improved in future)// should be used and inside a separate istance of CS's
95
// Set the new tolerance (abs(p_old/p_new-1)<tolerance)
96
static
void
setTolerance
(
G4double
tol){
tolerance
=tol;}
// Set NewTolerance for SameCrosSec
97
98
// At present momentum (pMom) must be in GeV (@@ Units)
99
virtual
G4double
GetCrossSection
(
G4bool
,
G4double
,
G4int
,
G4int
,
G4int
pPDG=0)
100
{
return
G4double
(pPDG);}
101
102
virtual
G4double
ThresholdEnergy
(
G4int
Z
,
G4int
N
,
G4int
PDG=0);
// Gives 0 by default
103
104
// Define in the derived class, F=0 - create AMDB, F=-1 - read AMDB, F=1 - update AMDB
105
virtual
G4double
CalculateCrossSection
(
G4bool
CS,
G4int
F,
G4int
I,
G4int
PDG,
G4int
tgZ,
106
G4int
tgN,
G4double
pMom)=0;
//*** PURE VIRTUAL ***
107
108
virtual
G4double
GetLastTOTCS
();
// LastCalculated total cross-section (total elastic)
109
110
virtual
G4double
GetLastQELCS
();
// LastCalculated quasielastic cross-section (quasifree)
111
112
virtual
G4double
GetDirectPart
(
G4double
Q2);
// DirectInteraction with QuarkPartons (nuA)
113
114
virtual
G4double
GetNPartons
(
G4double
Q2);
// #ofQuarkPartons in nonPerturbatPhaseSp(nuA)
115
116
// Subroutines for the t-chanel processes with a leader (DIS, Elastic, Quasielastic etc.)
117
118
virtual
G4double
GetExchangeEnergy
();
// Returns energy of the t-chanel particle (gam,pi)
119
120
virtual
G4double
GetExchangeT
(
G4int
tZ,
G4int
tN,
G4int
pPDG);
// -t=Q2 for hadronic
121
122
virtual
G4double
GetSlope
(
G4int
tZ,
G4int
tN,
G4int
pPDG);
// B-slope of the maim maximum
123
124
virtual
G4double
GetHMaxT
();
// max(-t=Q2)/2 for hadronic (MeV^2)
125
126
virtual
G4double
GetExchangeQ2
(
G4double
nu=0);
// Q2 for lepto-nuclear reactions
127
128
virtual
G4double
GetVirtualFactor
(
G4double
nu,
G4double
Q2);
// ReductionFactor (leptA)
129
130
virtual
G4double
GetQEL_ExchangeQ2
();
// Get randomized Q2 for quasi-elastic scattering
131
132
virtual
G4double
GetNQE_ExchangeQ2
();
// Get randomized Q2 for non quasi-elastic scat.
133
134
virtual
G4int
GetExchangePDGCode
();
// PDGCode of the Exchange Particle (Pi0 by default)
135
136
// Body: Basic Parameters of DAMDB (each derived class can add it's own values)
137
// -----------------------------------------------------------------------------
138
// The basic scheme of the DAMDB coveres the cross section for isotopes with fixed
139
// Z (lastZ - number of protons) and N (lastN - number of neutrons) from the
140
// Threshold momentum (TH) up to infinity. The cross section is first (Tab.1)
141
// tabulated from the threshold till the boundary momentum (BP). The Tab.1 is
142
// the function of the momentum (p) with the N1 elements. The N1 elements can be
143
// not all different from zero. The first non-zero element is F1, the last non-zero
144
// element is L1. If TH#0 the Tab.1 can be skipped. It is defined by N1=F1=L1=0 and
145
// BP=TH. The Tab.1 is the function of the ln(p) with N2 elements (F2 is the first
146
// non-zero element, L2 is the last non-zero element) from BP up tp MP. Both Tab.1
147
// and Tab.2 are calculated when the projectile of the class meet the corresponding
148
// ion. After that the tables are stored in the DAMDB for the fast calculations. To
149
// avoid a complete calculation of the tables in the low energy calculation case,
150
// the lastP momentum is used. The tables are calculated only till the momentum,
151
// which already appeared in the simulation for this projectile and this isotope.
152
// If the momentum above MP appeared, then the extrapolation function is calculated.
153
// So, if lastP>MP it means that the cross section is defined for all energies above
154
// TH. All parameters and pointers to arrays MUST be stored (F=0), updated (F=1) and
155
// retrieved (F=-1) by the derived class in the CalculateCrossSection(F,I,N,Z,P)
156
// function. The parameters are used for the immediate result: if the cross section is
157
// calculated for the same Z, N, and fabs(p-lastP)/lastP<.001 (? - a parameter), the same
158
// cross section (lastCS) is returned, if p<lastTH, then the 0 cross section is returned.
159
// It helps to avoid double counting. The derived class can have only the approximation
160
// functions, but such class is too slow, as it calculates the arythmetic equations each
161
// time, when it is necessary to get a new cross section. So it is reasonable to
162
// precalculate the tables, store them in memory, remember the pointers to these
163
// functions and just interpolate them in the range of the most frequent energies (use
164
// a LinearFit inline function of this virtual class for that). Starting some high
165
// momentum (PM) the functional calculations are unavoidable, but fortunately they are
166
// not frequent. In case of the ion-nuclear cross section the functional approach can
167
// be reasonable, because tabulated cross-sections demand too much memory.
168
//
169
// -----------------------------------------------------------------------------
170
protected
:
171
G4double
LinearFit
(
G4double
X
,
G4int
N
,
G4double
* XN,
G4double
* YN);
172
173
G4double
EquLinearFit
(
G4double
X
,
G4int
N
,
G4double
X0,
G4double
DX,
G4double
*
Y
);
174
175
static
G4double
tolerance
;
// relative tolerance in momentum to get old CroSec
176
};
177
178
#endif
Generated on Sat May 25 2013 14:33:48 for Geant4 by
1.8.4