Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4VPreCompoundFragment.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id$
27 //
28 // J. M. Quesada (August 2008). Based on previous work by V. Lara
29 //
30 // Modified:
31 // 20.08.2010 V.Ivanchenko added G4Pow and G4PreCompoundParameters pointers
32 // use int Z and A and cleanup
33 
35 #include "G4SystemOfUnits.hh"
37 #include "G4NucleiProperties.hh"
38 
40  const G4ParticleDefinition* part, G4VCoulombBarrier* aCoulombBarrier)
41  : particle(part), theCoulombBarrierPtr(aCoulombBarrier),
42  theRestNucleusA(0),theRestNucleusZ(0),theBindingEnergy(0.0),
43  theMaximalKineticEnergy(-MeV),theRestNucleusMass(0.0),
44  theReducedMass(0.0),theMomentum(0.,0.,0.,0.),
45  theEmissionProbability(0.0),theCoulombBarrier(0.0),
46  OPTxs(3),useSICB(false)
47 {
48  theA = particle->GetBaryonNumber();
49  theZ = G4int(particle->GetPDGCharge()/eplus + 0.1);
50  theMass = particle->GetPDGMass();
53  theRestNucleusA13 = 0;
54 }
55 
57 {}
58 
59 std::ostream&
60 operator << (std::ostream &out, const G4VPreCompoundFragment &theFragment)
61 {
62  out << &theFragment;
63  return out;
64 }
65 
66 std::ostream&
67 operator << (std::ostream &out, const G4VPreCompoundFragment *theFragment)
68 {
69  out
70  << "PreCompoundModel Emitted Fragment: Z= " << theFragment->GetZ()
71  << " A= " << theFragment->GetA()
72  << " Mass(GeV)= " << theFragment->GetNuclearMass()/CLHEP::GeV;
73  return out;
74 }
75 
76 void
78 {
79  theRestNucleusA = aFragment.GetA_asInt() - theA;
80  theRestNucleusZ = aFragment.GetZ_asInt() - theZ;
81 
82  if ((theRestNucleusA < theRestNucleusZ) ||
83  (theRestNucleusA < theA) ||
84  (theRestNucleusZ < theZ))
85  {
86  // In order to be sure that emission probability will be 0.
87  theMaximalKineticEnergy = 0.0;
88  return;
89  }
90 
91  theRestNucleusA13 = g4pow->Z13(theRestNucleusA);
92 
93  // Calculate Coulomb barrier
94  theCoulombBarrier = theCoulombBarrierPtr->
95  GetCoulombBarrier(theRestNucleusA,theRestNucleusZ,
96  aFragment.GetExcitationEnergy());
97 
98  // Calculate masses
99  theRestNucleusMass =
100  G4NucleiProperties::GetNuclearMass(theRestNucleusA, theRestNucleusZ);
101  theReducedMass = theRestNucleusMass*theMass/(theRestNucleusMass + theMass);
102 
103  // Compute Binding Energies for fragments
104  // needed to separate a fragment from the nucleus
105  theBindingEnergy =
106  theRestNucleusMass + theMass - aFragment.GetGroundStateMass();
107 
108  // Compute Maximal Kinetic Energy which can be carried by fragments
109  // after separation - the true assimptotic value
110  G4double Ecm = aFragment.GetMomentum().m();
111  theMaximalKineticEnergy =
112  ((Ecm-theRestNucleusMass)*(Ecm+theRestNucleusMass) + theMass*theMass)/(2.0*Ecm)-theMass;
113 }