Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4TritonEvaporationProbability.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id$
27 //
28 // J.M. Quesada (August2008). Based on:
29 //
30 // Hadronic Process: Nuclear De-excitations
31 // by V. Lara (Oct 1998)
32 //
33 // Modified:
34 // 03-09-2008 J.M. Quesada for external choice of inverse cross section option
35 // 17-11-2010 V.Ivanchenko integer Z and A
36 
38 #include "G4SystemOfUnits.hh"
39 
41  G4EvaporationProbability(3,1,2,&theCoulombBarrier) // A,Z,Gamma,&theCoulombBarrier
42 {
43  ResidualA = ResidualZ = theA = theZ = FragmentA = 0;
44  ResidualAthrd = FragmentAthrd = 0.0;
45 }
46 
48 {}
49 
50 G4double G4TritonEvaporationProbability::CalcAlphaParam(const G4Fragment & fragment)
51 {
52  return 1.0 + CCoeficient(fragment.GetZ_asInt()-GetZ());
53 }
54 
55 G4double G4TritonEvaporationProbability::CalcBetaParam(const G4Fragment & )
56 {
57  return 0.0;
58 }
59 
60 G4double G4TritonEvaporationProbability::CCoeficient(G4int aZ)
61 {
62  // Data comes from
63  // Dostrovsky, Fraenkel and Friedlander
64  // Physical Review, vol 116, num. 3 1959
65  //
66  // const G4int size = 5;
67  // G4double Zlist[5] = { 10.0, 20.0, 30.0, 50.0, 70.0};
68  // G4double Cp[5] = { 0.50, 0.28, 0.20, 0.15, 0.10};
69  // C for triton is equal to C for protons divided by 3
70  G4double C = 0.0;
71 
72  if (aZ >= 70) {
73  C = 0.10;
74  } else {
75  C = ((((0.15417e-06*aZ) - 0.29875e-04)*aZ + 0.21071e-02)*aZ - 0.66612e-01)*aZ + 0.98375;
76  }
77 
78  return C/3.0;
79 }
80 
82 //J. M. Quesada (Dec 2007-June 2008): New inverse reaction cross sections
83 //OPT=0 Dostrovski's parameterization
84 //OPT=1,2 Chatterjee's paramaterization
85 //OPT=3,4 Kalbach's parameterization
86 //
87 G4double
88 G4TritonEvaporationProbability::CrossSection(const G4Fragment & fragment, G4double K)
89 {
90  theA=GetA();
91  theZ=GetZ();
92  ResidualA=fragment.GetA_asInt()-theA;
93  ResidualZ=fragment.GetZ_asInt()-theZ;
94 
95  ResidualAthrd=fG4pow->Z13(ResidualA);
96  FragmentA=fragment.GetA_asInt();
97  FragmentAthrd=fG4pow->Z13(FragmentA);
98 
99  if (OPTxs==0) {std::ostringstream errOs;
100  errOs << "We should'n be here (OPT =0) at evaporation cross section calculation (tritons)!!"
101  <<G4endl;
102  throw G4HadronicException(__FILE__, __LINE__, errOs.str());
103  return 0.;}
104  if( OPTxs==1 || OPTxs==2) return G4TritonEvaporationProbability::GetOpt12( K);
105  else if (OPTxs==3 || OPTxs==4) return G4TritonEvaporationProbability::GetOpt34( K);
106  else{
107  std::ostringstream errOs;
108  errOs << "BAD Triton CROSS SECTION OPTION AT EVAPORATION!!" <<G4endl;
109  throw G4HadronicException(__FILE__, __LINE__, errOs.str());
110  return 0.;
111  }
112 }
113 
114 //
115 //********************* OPT=1,2 : Chatterjee's cross section *****************
116 //(fitting to cross section from Bechetti & Greenles OM potential)
117 
118 G4double G4TritonEvaporationProbability::GetOpt12(G4double K)
119 {
120  G4double Kc=K;
121 
122  // JMQ xsec is set constat above limit of validity
123  if (K > 50*MeV) { Kc=50*MeV; }
124 
125  G4double landa ,mu ,nu ,p , Ec,q,r,ji,xs;
126 
127  G4double p0 = -11.04;
128  G4double p1 = 619.1;
129  G4double p2 = -2147.;
130  G4double landa0 = -0.0426;
131  G4double landa1 = -10.33;
132  G4double mum0 = 601.9;
133  G4double mu1 = 0.37;
134  G4double nu0 = 583.0;
135  G4double nu1 = -546.2;
136  G4double nu2 = 1.718;
137  G4double delta=1.2;
138 
139  Ec = 1.44*theZ*ResidualZ/(1.5*ResidualAthrd+delta);
140  p = p0 + p1/Ec + p2/(Ec*Ec);
141  landa = landa0*ResidualA + landa1;
142 
143  G4double resmu1 = fG4pow->powZ(ResidualA,mu1);
144  mu = mum0*resmu1;
145  nu = resmu1*(nu0 + nu1*Ec + nu2*(Ec*Ec));
146  q = landa - nu/(Ec*Ec) - 2*p*Ec;
147  r = mu + 2*nu/Ec + p*(Ec*Ec);
148 
149  ji=std::max(Kc,Ec);
150  if(Kc < Ec) { xs = p*Kc*Kc + q*Kc + r;}
151  else {xs = p*(Kc - ji)*(Kc - ji) + landa*Kc + mu + nu*(2 - Kc/ji)/ji ;}
152 
153  if (xs <0.0) {xs=0.0;}
154 
155  return xs;
156 }
157 
158 // *********** OPT=3,4 : Kalbach's cross sections (from PRECO code)*************
159 G4double G4TritonEvaporationProbability::GetOpt34(G4double K)
160 // ** t from o.m. of hafele, flynn et al
161 {
162  G4double landa, mu, nu, p , signor(1.),sig;
163  G4double ec,ecsq,xnulam,etest(0.),a;
164  G4double b,ecut,cut,ecut2,geom,elab;
165 
166  G4double flow = 1.e-18;
167  G4double spill= 1.e+18;
168 
169  G4double p0 = -21.45;
170  G4double p1 = 484.7;
171  G4double p2 = -1608.;
172  G4double landa0 = 0.0186;
173  G4double landa1 = -8.90;
174  G4double mum0 = 686.3;
175  G4double mu1 = 0.325;
176  G4double nu0 = 368.9;
177  G4double nu1 = -522.2;
178  G4double nu2 = -4.998;
179 
180  G4double ra=0.80;
181 
182  //JMQ 13/02/09 increase of reduced radius to lower the barrier
183  // ec = 1.44 * theZ * ResidualZ / (1.5*ResidualAthrd+ra);
184  ec = 1.44 * theZ * ResidualZ / (1.7*ResidualAthrd+ra);
185  ecsq = ec * ec;
186  p = p0 + p1/ec + p2/ecsq;
187  landa = landa0*ResidualA + landa1;
188  a = fG4pow->powZ(ResidualA,mu1);
189  mu = mum0 * a;
190  nu = a* (nu0+nu1*ec+nu2*ecsq);
191  xnulam = nu / landa;
192  if (xnulam > spill) { xnulam=0.; }
193  if (xnulam >= flow) { etest = 1.2 *std::sqrt(xnulam); }
194 
195  a = -2.*p*ec + landa - nu/ecsq;
196  b = p*ecsq + mu + 2.*nu/ec;
197  ecut = 0.;
198  cut = a*a - 4.*p*b;
199  if (cut > 0.) { ecut = std::sqrt(cut); }
200  ecut = (ecut-a) / (p+p);
201  ecut2 = ecut;
202  //JMQ 290310 for avoiding unphysical increase below minimum (at ecut)
203  // ecut<0 means that there is no cut with energy axis, i.e. xs is set
204  // to 0 bellow minimum
205  // if (cut < 0.) ecut2 = ecut - 2.;
206  if (cut < 0.) { ecut2 = ecut; }
207  elab = K * FragmentA / G4double(ResidualA);
208  sig = 0.;
209 
210  if (elab <= ec) { //start for E<Ec
211  if (elab > ecut2) { sig = (p*elab*elab+a*elab+b) * signor; }
212  } //end for E<Ec
213  else { //start for E>Ec
214  sig = (landa*elab+mu+nu/elab) * signor;
215  geom = 0.;
216  if (xnulam < flow || elab < etest) { return sig; }
217  geom = std::sqrt(theA*K);
218  geom = 1.23*ResidualAthrd + ra + 4.573/geom;
219  geom = 31.416 * geom * geom;
220  sig = std::max(geom,sig);
221  } //end for E>Ec
222  return sig;
223 }
224