Geant4
9.6.p02
Main Page
Related Pages
Modules
Namespaces
Classes
Files
File List
File Members
All
Classes
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Enumerator
Friends
Macros
Groups
Pages
geant4_9_6_p02
source
geometry
solids
BREPS
include
G4SphericalSurface.hh
Go to the documentation of this file.
1
//
2
// ********************************************************************
3
// * License and Disclaimer *
4
// * *
5
// * The Geant4 software is copyright of the Copyright Holders of *
6
// * the Geant4 Collaboration. It is provided under the terms and *
7
// * conditions of the Geant4 Software License, included in the file *
8
// * LICENSE and available at http://cern.ch/geant4/license . These *
9
// * include a list of copyright holders. *
10
// * *
11
// * Neither the authors of this software system, nor their employing *
12
// * institutes,nor the agencies providing financial support for this *
13
// * work make any representation or warranty, express or implied, *
14
// * regarding this software system or assume any liability for its *
15
// * use. Please see the license in the file LICENSE and URL above *
16
// * for the full disclaimer and the limitation of liability. *
17
// * *
18
// * This code implementation is the result of the scientific and *
19
// * technical work of the GEANT4 collaboration. *
20
// * By using, copying, modifying or distributing the software (or *
21
// * any work based on the software) you agree to acknowledge its *
22
// * use in resulting scientific publications, and indicate your *
23
// * acceptance of all terms of the Geant4 Software license. *
24
// ********************************************************************
25
//
26
//
27
// $Id$
28
//
29
// ----------------------------------------------------------------------
30
// Class G4SphericalSurface
31
//
32
// Class description:
33
//
34
// Definition of a spherical surface.
35
36
// The code for G4SphericalSurface has been derived from the original
37
// implementation in the "Gismo" package.
38
//
39
// Authors: L.Lim, A.Breakstone.
40
// Adaptation: J.Sulkimo, P.Urban.
41
// Revisions by: L.Broglia, G.Cosmo.
42
// ----------------------------------------------------------------------
43
#ifndef __G4SpheShell_H
44
#define __G4SpheShell_H
45
46
#include "
G4Surface.hh
"
47
#include "
G4ThreeMat.hh
"
48
49
class
G4SphericalSurface
:
public
G4Surface
50
{
51
52
public
:
// with description
53
54
G4SphericalSurface
();
55
// Default constructor.
56
57
G4SphericalSurface
(
const
G4Vector3D
& o,
58
const
G4Vector3D
& xhat,
const
G4Vector3D
& zhat,
59
G4double
r
,
60
G4double
ph1,
G4double
ph2,
61
G4double
th1,
G4double
th2 );
62
// Normal constructor:
63
// first argument is the origin of the G4SphericalSurface
64
// second argument is the axis of the G4SphericalSurface
65
// which defines azimuthal angle equals zero
66
// third argument is the axis of the G4SphericalSurface
67
// which defines polar angle equals zero
68
// fourth argument is the radius of the G4SphericalSurface
69
// fifth argument is the lower azimuthal angle limit of the surface
70
// sixth argument is the upper azimuthal angle limit of the surface
71
// seventh argument is the lower polar angle limit of the surface
72
// eigth argument is the upper polar angle limit of the surface
73
74
virtual
~G4SphericalSurface
();
75
// Destructor.
76
77
inline
G4int
operator==
(
const
G4SphericalSurface
&
s
);
78
// Equality operator.
79
80
inline
G4String
GetEntityType
()
const
;
81
// Returns the type identifier.
82
83
virtual
const
char
*
NameOf
()
const
;
84
// Returns the class name.
85
86
virtual
void
PrintOn
( std::ostream& os =
G4cout
)
const
;
87
// Printing function, streaming surface's attributes.
88
89
G4int
Intersect
(
const
G4Ray
&);
90
// Returns the distance along a Ray (straight line with G4Vector3D) to
91
// leave or enter a G4SphericalSurface.
92
// If the G4Vector3D of the Ray is opposite to that of the Normal to
93
// the G4SphericalSurface at the intersection point, it will not leave the
94
// G4SphericalSurface.
95
// Similarly, if the G4Vector3D of the Ray is along that of the Normal
96
// to the G4SphericalSurface at the intersection point, it will not enter
97
// the G4SphericalSurface.
98
// This method is called by all finite shapes sub-classed to
99
// G4SphericalSurface.
100
// A negative result means no intersection.
101
// If no valid intersection point is found, set the distance
102
// and intersection point to large numbers.
103
104
void
CalcBBox
();
105
// Computes the bounding-box.
106
107
inline
void
Comp
(
G4Vector3D
&
v
,
G4Point3D
& min ,
G4Point3D
& max);
108
// Compares the x,y and z values of v and min
109
// versus v and max. min/max-values are replaced if
110
// greater/smaller than v-values.
111
112
virtual
G4double
HowNear
(
const
G4Vector3D
&
x
)
const
;
113
// Returns the distance from a point to a G4SphericalSurface
114
// The point x is the (input) argument.
115
// The distance is positive if the point is Inside, negative if it
116
// is outside
117
118
virtual
G4Vector3D
SurfaceNormal
(
const
G4Point3D
&
p
)
const
;
119
// Returns the Normal unit vector to the G4SphericalSurface at a point p
120
// on (or nearly on) the G4SphericalSurface.
121
122
virtual
G4int
Inside
(
const
G4Vector3D
& x )
const
;
123
// Returns 1 if the point x is Inside the G4SphericalSurface, 0 otherwise.
124
125
virtual
G4int
WithinBoundary
(
const
G4Vector3D
& x )
const
;
126
// Returns 1 if the point x is within the boundary, 0 otherwise.
127
128
virtual
G4double
Scale
()
const
;
129
// Returns the radius, unless it is zero, in which case it
130
// returns 1. Used for Scale-invariant tests of surface thickness.
131
132
virtual
G4double
Area
()
const
;
133
// Calculates the area of a G4SphericalSurface.
134
135
virtual
void
resize
(
G4double
r,
G4double
ph1,
G4double
ph2,
136
G4double
th1,
G4double
th2);
137
// Resizes the G4SphericalSurface to new radius and angle limits.
138
// first argument is the radius of the G4SphericalSurface
139
// second argument is the lower azimuthal angle limit of the surface
140
// third argument is the upper azimuthal angle limit of the surface
141
// fourth argument is the lower polar angle limit of the surface
142
// fifth argument is the upper polar angle limit of the surface
143
144
inline
G4Vector3D
GetXAxis
()
const
;
145
inline
G4Vector3D
GetZAxis
()
const
;
146
inline
G4double
GetRadius
()
const
;
147
inline
G4double
GetPhi1
()
const
;
148
inline
G4double
GetPhi2
()
const
;
149
inline
G4double
GetTheta1
()
const
;
150
inline
G4double
GetTheta2
()
const
;
151
// Accessors methodss to return the axes, radius, and angles
152
// of the G4SphericalSurface.
153
154
public
:
// without description
155
156
virtual
G4Vector3D
Normal
(
const
G4Vector3D
& p )
const
;
157
// Returns the Normal unit vector as for SurfaceNormal().
158
159
/*
160
virtual G4double distanceAlongRay( G4int which_way, const G4Ray* ry,
161
G4ThreeVec& p ) const;
162
// Returns the distance along a Ray to enter or leave a G4SphericalSurface.
163
// The first (input) argument is +1 to leave or -1 to enter
164
// The second (input) argument is a pointer to the Ray
165
// The third (output) argument returns the intersection point.
166
167
virtual G4double distanceAlongHelix( G4int which_way, const Helix* hx,
168
G4ThreeVec& p ) const;
169
// Returns the distance along a Helix to enter or leave a G4SphericalSurface.
170
// The first (input) argument is +1 to leave or -1 to enter
171
// The second (input) argument is a pointer to the Helix
172
// The third (output) argument returns the intersection point.
173
174
virtual G4Vector3D Normal( const G4Point3D& p ) const;
175
// Returns the Normal unit vector to a G4SphericalSurface at a point p
176
// on (or nearly on) the G4SphericalSurface.
177
178
virtual void rotate( G4double alpha, G4double beta,
179
G4double gamma, G4ThreeMat& m, G4int inverse );
180
// Rotates the G4SphericalSurface (angles are assumed to be given in
181
// radians), arguments:
182
// - first about global x_axis by angle alpha,
183
// - second about global y-axis by angle beta,
184
// - third about global z_axis by angle gamma,
185
// - fourth (output) argument gives the calculated rotation matrix,
186
// - fifth (input) argument is an integer flag which if
187
// non-zero reverses the order of the rotations.
188
189
virtual void rotate( G4double alpha, G4double beta,
190
G4double gamma, G4int inverse );
191
// Rotates the G4SphericalSurface (angles are assumed to be given in
192
// radians), arguments:
193
// - first about global x_axis by angle alpha,
194
// - second about global y-axis by angle beta,
195
// - third about global z_axis by angle gamma,
196
// - fourth (input) argument is an integer flag which if
197
// non-zero reverses the order of the rotations.
198
*/
199
200
protected
:
// with description
201
202
G4Vector3D
x_axis
;
203
// Direction (unit vector) of axis of G4SphericalSurface
204
// which defines azimuthal angle of zero.
205
206
G4Vector3D
z_axis
;
207
// Direction (unit vector) of axis of G4SphericalSurface
208
// which defines polar angle of zero.
209
210
G4double
radius
;
211
// Radius of G4SphericalSurface.
212
213
G4double
phi_1
;
214
// Lower azimuthal angle limit of G4SphericalSurface
215
// (in radians). Allowed range: 0 <= phi_1 < 2*PI.
216
217
G4double
phi_2
;
218
// Upper azimuthal angle limit of G4SphericalSurface
219
// (in radians). Allowed range: phi_1 < phi_2 <= phi_1 + 2*PI
220
221
G4double
theta_1
;
222
// Lower polar angle limit of G4SphericalSurface
223
// (in radians). Allowed range: 0 <= theta_1 < PI.
224
225
G4double
theta_2
;
226
// Upper polar angle limit of G4SphericalSurface
227
// (in radians). Allowed range: theta_1 < theta_2 <= theta_1 + PI.
228
229
private
:
230
231
G4SphericalSurface
(
const
G4SphericalSurface
&);
232
G4SphericalSurface
& operator=(
const
G4SphericalSurface
&);
233
// Private copy constructor and assignment operator.
234
235
// virtual G4double gropeAlongHelix( const Helix* hx ) const;
236
// Private function to use a crude technique to find the intersection
237
// of a Helix with a G4SphericalSurface. It returns the turning angle
238
// along the Helix at which the intersection occurs or -1.0 if no
239
// intersection point is found. The argument to the call is the pointer
240
// to the Helix.
241
242
};
243
244
#include "G4SphericalSurface.icc"
245
246
#endif
Generated on Sat May 25 2013 14:33:13 for Geant4 by
1.8.4