Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4RPGSigmaMinusInelastic.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id$
27 //
28 
30 #include "G4PhysicalConstants.hh"
31 #include "G4SystemOfUnits.hh"
32 #include "Randomize.hh"
33 
36  G4Nucleus &targetNucleus )
37 {
38  const G4HadProjectile *originalIncident = &aTrack;
39  if (originalIncident->GetKineticEnergy()<= 0.1*MeV)
40  {
44  return &theParticleChange;
45  }
46 
47  // create the target particle
48 
49  G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
50 
51  if( verboseLevel > 1 )
52  {
53  const G4Material *targetMaterial = aTrack.GetMaterial();
54  G4cout << "G4RPGSigmaMinusInelastic::ApplyYourself called" << G4endl;
55  G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
56  G4cout << "target material = " << targetMaterial->GetName() << ", ";
57  G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
58  << G4endl;
59  }
60 
61  // Fermi motion and evaporation
62  // As of Geant3, the Fermi energy calculation had not been Done
63 
64  G4double ek = originalIncident->GetKineticEnergy()/MeV;
65  G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
66  G4ReactionProduct modifiedOriginal;
67  modifiedOriginal = *originalIncident;
68 
69  G4double tkin = targetNucleus.Cinema( ek );
70  ek += tkin;
71  modifiedOriginal.SetKineticEnergy( ek*MeV );
72  G4double et = ek + amas;
73  G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
74  G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
75  if( pp > 0.0 )
76  {
77  G4ThreeVector momentum = modifiedOriginal.GetMomentum();
78  modifiedOriginal.SetMomentum( momentum * (p/pp) );
79  }
80  //
81  // calculate black track energies
82  //
83  tkin = targetNucleus.EvaporationEffects( ek );
84  ek -= tkin;
85  modifiedOriginal.SetKineticEnergy( ek*MeV );
86  et = ek + amas;
87  p = std::sqrt( std::abs((et-amas)*(et+amas)) );
88  pp = modifiedOriginal.GetMomentum().mag()/MeV;
89  if( pp > 0.0 )
90  {
91  G4ThreeVector momentum = modifiedOriginal.GetMomentum();
92  modifiedOriginal.SetMomentum( momentum * (p/pp) );
93  }
94  G4ReactionProduct currentParticle = modifiedOriginal;
95  G4ReactionProduct targetParticle;
96  targetParticle = *originalTarget;
97  currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
98  targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
99  G4bool incidentHasChanged = false;
100  G4bool targetHasChanged = false;
101  G4bool quasiElastic = false;
102  G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
103  G4int vecLen = 0;
104  vec.Initialize( 0 );
105 
106  const G4double cutOff = 0.1;
107  if( originalIncident->GetKineticEnergy()/MeV > cutOff )
108  Cascade( vec, vecLen,
109  originalIncident, currentParticle, targetParticle,
110  incidentHasChanged, targetHasChanged, quasiElastic );
111 
112  CalculateMomenta( vec, vecLen,
113  originalIncident, originalTarget, modifiedOriginal,
114  targetNucleus, currentParticle, targetParticle,
115  incidentHasChanged, targetHasChanged, quasiElastic );
116 
117  SetUpChange( vec, vecLen,
118  currentParticle, targetParticle,
119  incidentHasChanged );
120 
121  delete originalTarget;
122  return &theParticleChange;
123 }
124 
125 
126 void G4RPGSigmaMinusInelastic::Cascade(
128  G4int& vecLen,
129  const G4HadProjectile *originalIncident,
130  G4ReactionProduct &currentParticle,
131  G4ReactionProduct &targetParticle,
132  G4bool &incidentHasChanged,
133  G4bool &targetHasChanged,
134  G4bool &quasiElastic )
135 {
136  // Derived from H. Fesefeldt's original FORTRAN code CASSM
137  //
138  // SigmaMinus undergoes interaction with nucleon within a nucleus. Check if it is
139  // energetically possible to produce pions/kaons. In not, assume nuclear excitation
140  // occurs and input particle is degraded in energy. No other particles are produced.
141  // If reaction is possible, find the correct number of pions/protons/neutrons
142  // produced using an interpolation to multiplicity data. Replace some pions or
143  // protons/neutrons by kaons or strange baryons according to the average
144  // multiplicity per Inelastic reaction.
145 
146  const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
147  const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
148  const G4double targetMass = targetParticle.GetMass()/MeV;
149  G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
150  targetMass*targetMass +
151  2.0*targetMass*etOriginal );
152  G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
153  if( availableEnergy <= G4PionPlus::PionPlus()->GetPDGMass()/MeV )
154  {
155  quasiElastic = true;
156  return;
157  }
158  static G4bool first = true;
159  const G4int numMul = 1200;
160  const G4int numSec = 60;
161  static G4double protmul[numMul], protnorm[numSec]; // proton constants
162  static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
163  // np = number of pi+, nneg = number of pi-, nz = number of pi0
164  G4int counter, nt=0, np=0, nneg=0, nz=0;
165  G4double test;
166  const G4double c = 1.25;
167  const G4double b[] = { 0.70, 0.70 };
168  if( first ) // compute normalization constants, this will only be Done once
169  {
170  first = false;
171  G4int i;
172  for( i=0; i<numMul; ++i )protmul[i] = 0.0;
173  for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
174  counter = -1;
175  for( np=0; np<(numSec/3); ++np )
176  {
177  for( nneg=std::max(0,np-1); nneg<=(np+1); ++nneg )
178  {
179  for( nz=0; nz<numSec/3; ++nz )
180  {
181  if( ++counter < numMul )
182  {
183  nt = np+nneg+nz;
184  if( nt>0 && nt<=numSec )
185  {
186  protmul[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
187  protnorm[nt-1] += protmul[counter];
188  }
189  }
190  }
191  }
192  }
193  for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
194  for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
195  counter = -1;
196  for( np=0; np<numSec/3; ++np )
197  {
198  for( nneg=np; nneg<=(np+2); ++nneg )
199  {
200  for( nz=0; nz<numSec/3; ++nz )
201  {
202  if( ++counter < numMul )
203  {
204  nt = np+nneg+nz;
205  if( nt>0 && nt<=numSec )
206  {
207  neutmul[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
208  neutnorm[nt-1] += neutmul[counter];
209  }
210  }
211  }
212  }
213  }
214  for( i=0; i<numSec; ++i )
215  {
216  if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
217  if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
218  }
219  } // end of initialization
220 
221  const G4double expxu = 82.; // upper bound for arg. of exp
222  const G4double expxl = -expxu; // lower bound for arg. of exp
227 
228  // energetically possible to produce pion(s) --> inelastic scattering
229 
230  G4double n, anpn;
231  GetNormalizationConstant( availableEnergy, n, anpn );
232  G4double ran = G4UniformRand();
233  G4double dum, excs = 0.0;
234  if( targetParticle.GetDefinition() == aProton )
235  {
236  counter = -1;
237  for( np=0; np<numSec/3 && ran>=excs; ++np )
238  {
239  for( nneg=std::max(0,np-1); nneg<=(np+1) && ran>=excs; ++nneg )
240  {
241  for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
242  {
243  if( ++counter < numMul )
244  {
245  nt = np+nneg+nz;
246  if( nt>0 && nt<=numSec )
247  {
248  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
249  dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
250  if( std::fabs(dum) < 1.0 )
251  {
252  if( test >= 1.0e-10 )excs += dum*test;
253  }
254  else
255  excs += dum*test;
256  }
257  }
258  }
259  }
260  }
261  if( ran >= excs ) // 3 previous loops continued to the end
262  {
263  quasiElastic = true;
264  return;
265  }
266  np--; nneg--; nz--;
267  G4int ncht = std::max( 1, np-nneg+2 );
268  switch( ncht )
269  {
270  case 1:
271  if( G4UniformRand() < 0.5 )
272  currentParticle.SetDefinitionAndUpdateE( aLambda );
273  else
274  currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
275  incidentHasChanged = true;
276  break;
277  case 2:
278  if( G4UniformRand() >= 0.5 )
279  {
280  if( G4UniformRand() < 0.5 )
281  currentParticle.SetDefinitionAndUpdateE( aLambda );
282  else
283  currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
284  incidentHasChanged = true;
285  targetParticle.SetDefinitionAndUpdateE( aNeutron );
286  targetHasChanged = true;
287  }
288  break;
289  default:
290  targetParticle.SetDefinitionAndUpdateE( aNeutron );
291  targetHasChanged = true;
292  break;
293  }
294  }
295  else // target must be a neutron
296  {
297  counter = -1;
298  for( np=0; np<numSec/3 && ran>=excs; ++np )
299  {
300  for( nneg=np; nneg<=(np+2) && ran>=excs; ++nneg )
301  {
302  for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
303  {
304  if( ++counter < numMul )
305  {
306  nt = np+nneg+nz;
307  if( nt>0 && nt<=numSec )
308  {
309  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
310  dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
311  if( std::fabs(dum) < 1.0 )
312  {
313  if( test >= 1.0e-10 )excs += dum*test;
314  }
315  else
316  excs += dum*test;
317  }
318  }
319  }
320  }
321  }
322  if( ran >= excs ) // 3 previous loops continued to the end
323  {
324  quasiElastic = true;
325  return;
326  }
327  np--; nneg--; nz--;
328  G4int ncht = std::max( 1, np-nneg+3 );
329  switch( ncht )
330  {
331  case 1:
332  if( G4UniformRand() < 0.5 )
333  currentParticle.SetDefinitionAndUpdateE( aLambda );
334  else
335  currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
336  incidentHasChanged = true;
337  targetParticle.SetDefinitionAndUpdateE( aProton );
338  targetHasChanged = true;
339  break;
340  case 2:
341  if( G4UniformRand() < 0.5 )
342  {
343  if( G4UniformRand() < 0.5 )
344  currentParticle.SetDefinitionAndUpdateE( aLambda );
345  else
346  currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
347  incidentHasChanged = true;
348  }
349  else
350  {
351  targetParticle.SetDefinitionAndUpdateE( aProton );
352  targetHasChanged = true;
353  }
354  break;
355  default:
356  break;
357  }
358  }
359 
360  SetUpPions(np, nneg, nz, vec, vecLen);
361  return;
362 }
363 
364  /* end of file */
365