Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4PenelopeAnnihilationModel.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id$
27 //
28 // Author: Luciano Pandola
29 //
30 // History:
31 // --------
32 // 29 Oct 2008 L Pandola Migration from process to model
33 // 15 Apr 2009 V Ivanchenko Cleanup initialisation and generation of secondaries:
34 // - apply internal high-energy limit only in constructor
35 // - do not apply low-energy limit (default is 0)
36 // - do not use G4ElementSelector
37 
39 #include "G4PhysicalConstants.hh"
40 #include "G4SystemOfUnits.hh"
41 #include "G4ParticleDefinition.hh"
42 #include "G4MaterialCutsCouple.hh"
43 #include "G4ProductionCutsTable.hh"
44 #include "G4DynamicParticle.hh"
45 #include "G4Gamma.hh"
46 
47 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
48 
49 
51  const G4String& nam)
52  :G4VEmModel(nam),fParticleChange(0),isInitialised(false)
53 {
54  fIntrinsicLowEnergyLimit = 0.0;
55  fIntrinsicHighEnergyLimit = 100.0*GeV;
56  // SetLowEnergyLimit(fIntrinsicLowEnergyLimit);
57  SetHighEnergyLimit(fIntrinsicHighEnergyLimit);
58 
59  //Calculate variable that will be used later on
61 
62  verboseLevel= 0;
63  // Verbosity scale:
64  // 0 = nothing
65  // 1 = warning for energy non-conservation
66  // 2 = details of energy budget
67  // 3 = calculation of cross sections, file openings, sampling of atoms
68  // 4 = entering in methods
69 
70 }
71 
72 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
73 
75 {;}
76 
77 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
78 
80  const G4DataVector&)
81 {
82  if (verboseLevel > 3)
83  G4cout << "Calling G4PenelopeAnnihilationModel::Initialise()" << G4endl;
84 
85  if(verboseLevel > 0) {
86  G4cout << "Penelope Annihilation model is initialized " << G4endl
87  << "Energy range: "
88  << LowEnergyLimit() / keV << " keV - "
89  << HighEnergyLimit() / GeV << " GeV"
90  << G4endl;
91  }
92 
93  if(isInitialised) return;
95  isInitialised = true;
96 }
97 
98 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
99 
101  const G4ParticleDefinition*,
105 {
106  if (verboseLevel > 3)
107  G4cout << "Calling ComputeCrossSectionPerAtom() of G4PenelopeAnnihilationModel" <<
108  G4endl;
109 
110  G4double cs = Z*ComputeCrossSectionPerElectron(energy);
111 
112  if (verboseLevel > 2)
113  G4cout << "Annihilation cross Section at " << energy/keV << " keV for Z=" << Z <<
114  " = " << cs/barn << " barn" << G4endl;
115  return cs;
116 }
117 
118 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
119 
120 void G4PenelopeAnnihilationModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
121  const G4MaterialCutsCouple*,
122  const G4DynamicParticle* aDynamicPositron,
123  G4double,
124  G4double)
125 {
126  //
127  // Penelope model to sample final state for positron annihilation.
128  // Target eletrons are assumed to be free and at rest. Binding effects enabling
129  // one-photon annihilation are neglected.
130  // For annihilation at rest, two back-to-back photons are emitted, having energy of 511 keV
131  // and isotropic angular distribution.
132  // For annihilation in flight, it is used the theory from
133  // W. Heitler, The quantum theory of radiation, Oxford University Press (1954)
134  // The two photons can have different energy. The efficiency of the sampling algorithm
135  // of the photon energy from the dSigma/dE distribution is practically 100% for
136  // positrons of kinetic energy < 10 keV. It reaches a minimum (about 80%) at energy
137  // of about 10 MeV.
138  // The angle theta is kinematically linked to the photon energy, to ensure momentum
139  // conservation. The angle phi is sampled isotropically for the first gamma.
140  //
141  if (verboseLevel > 3)
142  G4cout << "Calling SamplingSecondaries() of G4PenelopeAnnihilationModel" << G4endl;
143 
144  G4double kineticEnergy = aDynamicPositron->GetKineticEnergy();
145 
146  // kill primary
149 
150  if (kineticEnergy == 0.0)
151  {
152  //Old AtRestDoIt
153  G4double cosTheta = -1.0+2.0*G4UniformRand();
154  G4double sinTheta = std::sqrt(1.0-cosTheta*cosTheta);
155  G4double phi = twopi*G4UniformRand();
156  G4ThreeVector direction (sinTheta*std::cos(phi),sinTheta*std::sin(phi),cosTheta);
158  direction, electron_mass_c2);
159  G4DynamicParticle* secondGamma = new G4DynamicParticle (G4Gamma::Gamma(),
160  -direction, electron_mass_c2);
161 
162  fvect->push_back(firstGamma);
163  fvect->push_back(secondGamma);
164  return;
165  }
166 
167  //This is the "PostStep" case (annihilation in flight)
168  G4ParticleMomentum positronDirection =
169  aDynamicPositron->GetMomentumDirection();
170  G4double gamma = 1.0 + std::max(kineticEnergy,1.0*eV)/electron_mass_c2;
171  G4double gamma21 = std::sqrt(gamma*gamma-1);
172  G4double ani = 1.0+gamma;
173  G4double chimin = 1.0/(ani+gamma21);
174  G4double rchi = (1.0-chimin)/chimin;
175  G4double gt0 = ani*ani-2.0;
176  G4double test=0.0;
177  G4double epsilon = 0;
178  do{
179  epsilon = chimin*std::pow(rchi,G4UniformRand());
180  G4double reject = ani*ani*(1.0-epsilon)+2.0*gamma-(1.0/epsilon);
181  test = G4UniformRand()*gt0-reject;
182  }while(test>0);
183 
184  G4double totalAvailableEnergy = kineticEnergy + 2.0*electron_mass_c2;
185  G4double photon1Energy = epsilon*totalAvailableEnergy;
186  G4double photon2Energy = (1.0-epsilon)*totalAvailableEnergy;
187  G4double cosTheta1 = (ani-1.0/epsilon)/gamma21;
188  G4double cosTheta2 = (ani-1.0/(1.0-epsilon))/gamma21;
189 
190  //G4double localEnergyDeposit = 0.;
191 
192  G4double sinTheta1 = std::sqrt(1.-cosTheta1*cosTheta1);
193  G4double phi1 = twopi * G4UniformRand();
194  G4double dirx1 = sinTheta1 * std::cos(phi1);
195  G4double diry1 = sinTheta1 * std::sin(phi1);
196  G4double dirz1 = cosTheta1;
197 
198  G4double sinTheta2 = std::sqrt(1.-cosTheta2*cosTheta2);
199  G4double phi2 = phi1+pi;
200  G4double dirx2 = sinTheta2 * std::cos(phi2);
201  G4double diry2 = sinTheta2 * std::sin(phi2);
202  G4double dirz2 = cosTheta2;
203 
204  G4ThreeVector photon1Direction (dirx1,diry1,dirz1);
205  photon1Direction.rotateUz(positronDirection);
206  // create G4DynamicParticle object for the particle1
208  photon1Direction,
209  photon1Energy);
210  fvect->push_back(aParticle1);
211 
212  G4ThreeVector photon2Direction(dirx2,diry2,dirz2);
213  photon2Direction.rotateUz(positronDirection);
214  // create G4DynamicParticle object for the particle2
216  photon2Direction,
217  photon2Energy);
218  fvect->push_back(aParticle2);
219 
220  if (verboseLevel > 1)
221  {
222  G4cout << "-----------------------------------------------------------" << G4endl;
223  G4cout << "Energy balance from G4PenelopeAnnihilation" << G4endl;
224  G4cout << "Kinetic positron energy: " << kineticEnergy/keV << " keV" << G4endl;
225  G4cout << "Total available energy: " << totalAvailableEnergy/keV << " keV " << G4endl;
226  G4cout << "-----------------------------------------------------------" << G4endl;
227  G4cout << "Photon energy 1: " << photon1Energy/keV << " keV" << G4endl;
228  G4cout << "Photon energy 2: " << photon2Energy/keV << " keV" << G4endl;
229  G4cout << "Total final state: " << (photon1Energy+photon2Energy)/keV <<
230  " keV" << G4endl;
231  G4cout << "-----------------------------------------------------------" << G4endl;
232  }
233  if (verboseLevel > 0)
234  {
235  G4double energyDiff = std::fabs(totalAvailableEnergy-photon1Energy-photon2Energy);
236  if (energyDiff > 0.05*keV)
237  G4cout << "Warning from G4PenelopeAnnihilation: problem with energy conservation: " <<
238  (photon1Energy+photon2Energy)/keV <<
239  " keV (final) vs. " <<
240  totalAvailableEnergy/keV << " keV (initial)" << G4endl;
241  }
242  return;
243 }
244 
245 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
246 
247 G4double G4PenelopeAnnihilationModel:: ComputeCrossSectionPerElectron(G4double energy)
248 {
249  //
250  // Penelope model to calculate cross section for positron annihilation.
251  // The annihilation cross section per electron is calculated according
252  // to the Heitler formula
253  // W. Heitler, The quantum theory of radiation, Oxford University Press (1954)
254  // in the assumptions of electrons free and at rest.
255  //
256  G4double gamma = 1.0+std::max(energy,1.0*eV)/electron_mass_c2;
257  G4double gamma2 = gamma*gamma;
258  G4double f2 = gamma2-1.0;
259  G4double f1 = std::sqrt(f2);
260  G4double crossSection = fPielr2*((gamma2+4.0*gamma+1.0)*std::log(gamma+f1)/f2
261  - (gamma+3.0)/f1)/(gamma+1.0);
262  return crossSection;
263 }