Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4OpMieHG.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
28 //
29 // File G4OpMieHG.hh
30 // Description: Discrete Process -- Mie Scattering of Optical Photons
31 // Created: 2010-07-03
32 // Author: Xin Qian
33 // Based on work from Vlasios Vasileiou
34 //
35 // This subroutine will mimic the Mie scattering based on
36 // Henyey-Greenstein phase function
37 // Forward and backward angles are treated separately.
38 //
39 // mail: gum@triumf.ca
40 //
42 
43 #include "G4OpMieHG.hh"
44 #include "G4PhysicalConstants.hh"
45 #include "G4OpProcessSubType.hh"
46 
47 G4OpMieHG::G4OpMieHG(const G4String& processName, G4ProcessType type)
48  : G4VDiscreteProcess(processName, type)
49 {
50  if (verboseLevel>0) {
51  G4cout << GetProcessName() << " is created " << G4endl;
52  }
53 
55 }
56 
58 
60  // Methods
62 
63 // PostStepDoIt
64 // -------------
65 //
67 G4OpMieHG::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep)
68 {
70 
71  const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle();
72  const G4Material* aMaterial = aTrack.GetMaterial();
73  G4MaterialPropertiesTable* aMaterialPropertyTable =
74  aMaterial->GetMaterialPropertiesTable();
75 
76  G4double forward_g =
77  aMaterialPropertyTable->GetConstProperty("MIEHG_FORWARD");
78  G4double backward_g =
79  aMaterialPropertyTable->GetConstProperty("MIEHG_BACKWARD");
80  G4double ForwardRatio =
81  aMaterialPropertyTable->GetConstProperty("MIEHG_FORWARD_RATIO");
82 
83  if (verboseLevel>0) {
84  G4cout << "MIE Scattering Photon!" << G4endl;
85  G4cout << "MIE Old Momentum Direction: "
86  << aParticle->GetMomentumDirection() << G4endl;
87  G4cout << "MIE Old Polarization: "
88  << aParticle->GetPolarization() << G4endl;
89  }
90 
91  G4double gg;
92  G4int direction;
93  if (G4UniformRand()<=ForwardRatio){
94  gg = forward_g;
95  direction = 1;
96  } else {
97  gg = backward_g;
98  direction = -1;
99  }
100 
102 
103  G4double Theta;
104  //sample the direction
105  if (gg!=0) {
106  Theta = std::acos(2*r*(1+gg)*(1+gg)*(1-gg+gg*r)/((1-gg+2*gg*r)*(1-gg+2*gg*r)) -1);
107  } else {
108  Theta = std::acos(2*r-1.);
109  }
110  G4double Phi = G4UniformRand()*2*pi;
111 
112  if (direction==-1) Theta = pi - Theta; //backward scattering
113 
114  G4ThreeVector NewMomentumDirection, OldMomentumDirection;
115  G4ThreeVector OldPolarization, NewPolarization;
116 
117  NewMomentumDirection.set
118  (std::sin(Theta)*std::cos(Phi), std::sin(Theta)*std::sin(Phi), std::cos(Theta));
119  OldMomentumDirection = aParticle->GetMomentumDirection();
120  NewMomentumDirection.rotateUz(OldMomentumDirection);
121  NewMomentumDirection = NewMomentumDirection.unit();
122 
123  OldPolarization = aParticle->GetPolarization();
124  G4double constant = -1./NewMomentumDirection.dot(OldPolarization);
125 
126  NewPolarization = NewMomentumDirection + constant*OldPolarization;
127  NewPolarization = NewPolarization.unit();
128 
129  if (NewPolarization.mag()==0) {
130  r = G4UniformRand()*twopi;
131  NewPolarization.set(std::cos(r),std::sin(r),0.);
132  NewPolarization.rotateUz(NewMomentumDirection);
133  } else {
134  // There are two directions which perpendicular
135  // new momentum direction
136  if (G4UniformRand() < 0.5) NewPolarization = -NewPolarization;
137  }
138 
139  aParticleChange.ProposePolarization(NewPolarization);
140  aParticleChange.ProposeMomentumDirection(NewMomentumDirection);
141 
142  if (verboseLevel>0) {
143  G4cout << "MIE New Polarization: "
144  << NewPolarization << G4endl;
145  G4cout << "MIE Polarization Change: "
146  << *(aParticleChange.GetPolarization()) << G4endl;
147  G4cout << "MIE New Momentum Direction: "
148  << NewMomentumDirection << G4endl;
149  G4cout << "MIE Momentum Change: "
150  << *(aParticleChange.GetMomentumDirection()) << G4endl;
151  }
152 
153  return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
154 }
155 
156 // GetMeanFreePath()
157 // -----------------
158 //
160  G4double ,
162 {
163  const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle();
164  const G4Material* aMaterial = aTrack.GetMaterial();
165 
166  G4double thePhotonEnergy = aParticle->GetTotalEnergy();
167 
168  G4double AttenuationLength = DBL_MAX;
169 
170  G4MaterialPropertiesTable* aMaterialPropertyTable =
171  aMaterial->GetMaterialPropertiesTable();
172 
173  if (aMaterialPropertyTable) {
174  G4MaterialPropertyVector* AttenuationLengthVector =
175  aMaterialPropertyTable->GetProperty("MIEHG");
176  if (AttenuationLengthVector) {
177  AttenuationLength = AttenuationLengthVector ->
178  Value(thePhotonEnergy);
179  } else {
180 // G4cout << "No Mie scattering length specified" << G4endl;
181  }
182  } else {
183 // G4cout << "No Mie scattering length specified" << G4endl;
184  }
185 
186 // G4cout << thePhotonEnergy/GeV << " \t" << AttenuationLength/m << G4endl;
187 
188  return AttenuationLength;
189 }